2. \[S(q_0, a) = (q_1, q, R) \]

\[Q = \{ q_0, q_1 \} \]
\[F = \{ q_1 \} \]
\[\Sigma = \{ a, b \} \]
\[\Gamma = \{ a, b, \square \} \]

3. \text{aba}:
\[q_0 \xrightarrow{\text{aba}} q_1 \xrightarrow{b} q_2 \xrightarrow{x} q_3 \xrightarrow{a} q_4 \]

4. No.

5. \[L(a b^* + b b^* a (a+b)^*) \]

6. The Turing Machine halts in a non-accepting state

7 (b)

(b) \[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{b} q_3 \xrightarrow{0} q_4 \]

(g) \[q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \]

\[q_0 \xrightarrow{0} q_2 \xrightarrow{0} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]

\[q_0 \xrightarrow{y} q_2 \xrightarrow{y} q_1 \xrightarrow{a} q_2 \]
#11(a) Modify the machine in Example 9.10 to write two 1's for each x:

Section 11.1 #12 p. 282.

12 (a) If \(L_1 \) is recursive and \(L_2 \) is r.e., then \(L_2 - L_1 \) is necessarily r.e. because \(\bar{L} \) is r.e., so \(L_2 - L_1 = L_2 \cap \bar{L} \) = intersection of two r.e. sets = r.e

(b) If \(L_1 \) is recursive and \(L_2 \) is r.e., then \(L_1 - L_2 \) is not necessarily r.e. because if we take \(L_1 = \Sigma^* \) and \(L_2 \) = a non-recursive r.e. subset of \(\Sigma^* \), then \(L_1 - L_2 = a \) non-r.e. subset of \(\Sigma^* \).
#2. The set of all r.e. languages is countable since every r.e. language is associated with a TM and the number of different TMs is countable. If there were countably many non-r.e. languages as well, then there would be countably many languages altogether. But the set of all languages on \(\Sigma \) is uncountable because \(\mathcal{L}(\Sigma) = \mathcal{P}(\Sigma^*) \approx \mathcal{P}(\mathbb{N}) \) which is uncountable. So there are uncountably many non-r.e. languages.

#5. Suppose \(\overline{L} \) is recursive. Then \(\overline{L} \) will also be recursive by the closure theorem for recursive languages. But \(\overline{L} = L \). So \(L \) is recursive. Hence \(L \) is r.e. But we were told that \(L \) was not r.e. So if \(L \) is not r.e., then \(L \) cannot be recursive.

#6. Suppose \(L_1 \) and \(L_2 \) are r.e. Let \(M_1 \) and \(M_2 \) be TMs such that \(L(M_1) = L_1 \) and \(L(M_2) = L_2 \). A third TM \(M \) can run both \(M_1 \) and \(M_2 \) together and enter and enter a final state if either one does (e.g., \(M \) can put \(M_1 \) & \(M_2 \) through their respective moves alternately). Any \(w \) which causes either \(M_1 \) or \(M_2 \) to enter a final state will cause \(M \) to enter a final state and vice versa. \(\therefore L(M_1) \cup L(M_2) = L(M) \). \(\therefore L_1 \cup L_2 \) will be r.e.
#7 Yes, let M_1 and M_2 be as in problem 5 above. Another TM M can be designed to run both together and enter a final state if both M_1 and M_2 do. (For example, M can simulate M_1 and M_2 as follows. Put M_1 & M_2 alternately through their moves and if one of them halts in a final state, then continue only with the other one until it halts in a final state.) Then $L(M) = L(M_1) \cap L(M_2)$. So $L_1 \cap L_2$ is also r.e.

#8 If L_1 & L_2 are recursive, then $\overline{L_1}$, $\overline{L_2}$, L_1, and L_2 will all be r.e. So by problems 5 and 6,

$L_1 \cup L_2$ will be r.e.

and $L_1 \cap \overline{L_2} = \overline{L_1 \cup L_2}$ will be r.e.

Since $L_1 \cup L_2$ & $L_1 \cap \overline{L_2}$ are both r.e., it follows that $L_1 \cup L_2$ is recursive.

Similarly $L_1 \cap L_2$ & $\overline{L_1 \cup L_2}$ will be both r.e. Hence $L_1 \cap L_2$ will be recursive.

Note: recursive sets are closed under \cup, \cap, and compliments. r.e. sets are not closed under compliments.
#1. (a) \(\text{ADD}(3, 4) = \text{ADD}(3, 3+1) = \text{ADD}(3, 3) + 1 \)
\[= \text{ADD}(3, 3+1) + 1 = (\text{ADD}(3, 3) + 1) + 1 \]
\[= (\text{ADD}(3, 1+1) + 1) + 1 = ((\text{ADD}(3, 1) + 1) + 1) + 1 \]
\[= ((\text{ADD}(3, 0+1) + 1) + 1) + 1 = (((\text{ADD}(3, 0) + 1) + 1) + 1) + 1 \]
\[= (((3+1) + 1) + 1) + 1 = (((4 + 1) + 1) + 1) + 1 \]
\[= (5+1) + 1 = 6 + 1 = 7 \]

(b) \(\text{MULT}(2, 3) = \text{MULT}(2, 2+1) = \text{MULT}(2, 2) + 2 \)
\[= \text{MULT}(2, 2+1) + 2 = (\text{MULT}(2, 2) + 2) + 2 \]
\[= (\text{MULT}(2, 2) + 2) + 2 = ((\text{MULT}(2, 0) + 2) + 2) + 2 \]
\[= (((0+2) + 2) + 2) + 2 = \ldots = 6 \]

#2 Note \(1 \div 1 = (x - y + (y - x)) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases} \)

\[= \text{equal}(x, y) \]
\[= \text{monus}(c_1(p_1(x, y)), \text{add}(\text{monus}(x, y), \text{monus}(p_2(x, y), p_3(x, y)))) \]

#3 (a) Note that \(f(x, y) = x \div h(x, y) \) where
\[h(x, y) = \begin{cases} 0 & \text{if } x \neq y \\ x & \text{if } x = y \end{cases} \]

So \(f(x, y) = x \div (x, \text{equal}(x, y)) \)
\[= \text{monus}(p(x, y), \text{mult}(p(x, y), \text{equal}(x, y))) \]

(b) \(f(0) = 1 \)
\[f(y+1) = \text{mult}(y, f(y)) \]
From this we can see \(f(y) = y! \) is primitive recursive by doing a little work.