CHAPTER 1 - LANGUAGES & REG. EXPR.

E1. Let \(A = \{ a \} \) and \(B = \{ b \} \). Describe the following sets:

(a) \(A^* \)
(b) \(A^* \cdot B^* \)
(c) \((A \cdot B)^* \)
(d) \((A \cup B)^* \)
(e) \((A \cap B)^* \)
(f) \((A \cup B)^* \cdot AB \)
(g) \((A^* \cup AB)^* \cdot A \cup B^* \)
(h) \((A^* \cup AB)^* - (B \cap B)^* \)

E2. Find the simplest expressions for the following:

(a) \(\lambda \cdot \phi^* \)
(b) \(\lambda^* \cdot \phi^* \)
(c) \(A^* \cup \phi^* \)
(d) \((A \cup A)^* \)
(e) \((\lambda \cup A)^* \)
(f) \((\lambda^* \cdot \phi^*)^* \)
(g) \(\{ \phi, \{ \phi \} \} - \phi \)
(h) \(\{ \phi, \{ \phi \} \} - \{ \phi \} \)
(i) \(\{ \phi \} \cap \{ \phi, \{ \phi \} \} \)
(j) \(\{ \phi \} \cap \phi \)
(k) \(\lambda - \phi^* \)
(l) \(\lambda - \{ \phi^* \} \)
(m) \(\lambda^* - \phi^* \)
(n) \(\lambda \cdot \phi \)

E3. Find regular expressions for the following languages:

(a) \(\{ \phi \in \{0,1\}^* : 101 \text{ is a substring of } \phi \} \)
(b) \(\{ \phi \in \{0,1\}^* : \text{each } 0 \text{ in } \phi \text{ is immediately followed by at least two } 1's \} \)
(c) \(\{ \phi \in \{0,1\}^* : \text{each } 1 \text{ in } \phi \text{ is immediately followed by the string } 10 \} \)
(d) \(\{ \phi \in \{0,1\}^* : 101 \text{ is not a substring of } \phi \} \)
E4. Say which of the following equations are always true & provide proofs to justify your answers. Also say which of the equations are not always true and provide counterexamples to justify your answers. A, B & C are arbitrary languages.

(a) \(A(BA)^* = (AB)^*A \)
(b) \((AB)^* = A^*B^* \)
(c) \(A \cdot (B \cdot C)^* = (A \cdot B)^* \cap (A \cdot C)^* \)
(d) \(A^*B = B \cup A^*AB \)
(e) \((A \cap B)^* = A^* \cap B^* \)
(f) \(A^* \cdot (B \cap C)^* = (AB \cup AC)^* \)
(g) \((A \cdot B)^* = (A \cup B)^* \)
(h) \(A^* \cdot (B \cup C) = A^* \cdot B \cup A^* \cdot C \)

E5. Let \(S \) be a set of strings of letters from the alphabet \(\mathcal{V} \). We say that \(S \) is commutative if for any \(\alpha \) & \(\beta \) in \(S \)

\[\alpha \cdot \beta = \beta \cdot \alpha \]

(a) Prove that if \(S \subseteq (\omega)^* \), then \(S \) is commutative. Here \(\omega \) = a fixed string and \((\omega)^* = \{ \omega^n : n \geq 0 \} \)
(b) Prove that if \(S \) is commutative then we can find a string \(\omega \) such that \(S \subseteq (\omega)^* \)
CHAPTER 4 - REGULAR LANGUAGES

E6. (a) Prove that the language \(\{a^k b^3 k : k \geq 1\} \) is non-regular.
(b) Prove that the language \(\{\psi \psi^R : \psi \in \{0,1\}^*\} \) is non-regular.

E7. A prime number is any positive integer \(p > 1 \) which has only 1 & \(p \) as its divisors. Let \(L = \{a^p : p \text{ is a prime number}\} \). Prove that \(L \) is a non-regular language.

E8. Let \(X \) and \(Y \) be regular languages based on the alphabet \(V \). Determine which of the following languages are always regular and which of them are not always regular.

(a) \(\{w : w \in X \text{ and } w^R \in Y\} \)
(b) \(\{w : w \in X \text{ and } w^R \notin Y\} \)
(c) \(\{w : w \in X \text{ and } w^R = w\} \)
(d) \(\{\psi : \psi \in X \text{ or } \psi \notin Y\} \)
(e) \(\{\psi : \psi \notin X \text{ and } \psi \in X.Y\} \)
E9. Determine which of the following languages are regular and which are non-regular:
(a) \(\{a^k c a^l c a^m : m = k + l \} \)
(b) \(\{a^k c a^l c a^m : m = k + l \pmod{3} \} \)
(c) \(\{a_1 \ldots a_{2n} \in \{0,1\}^* : a_1 \ldots a_n = a_{n+1} \ldots a_{2n} \} \)
(d) \(\{w \in \{0,1\}^* : N_0(w) - N_1(w) \text{ is an even positive integer} \} \)

Here \(N_0(w) = \text{number of 0's in } w \).
and \(N_1(w) = \text{number of 1's in } w \).

E10. (a) Let \(L = \{P^0 Q^n R^n : n \geq 1 \} \) where \(P, Q \& R \)
are non-empty languages based on \(\{0,1\} \).
Is there a choice of \(P, Q \) and \(R \) for which \(L \) is regular?
(b) Find infinite sets \(L_1 \supseteq L_2 \supseteq L_3 \) such that
\(L_1 \& L_3 \) are non-regular and \(L_2 \) is regular.
(c) Find infinite sets \(L_1 \supseteq L_2 \supseteq L_3 \) such that
\(L_1 \& L_3 \) are regular and \(L_2 \) is non-reg.

E11. Suppose \(A \& B \) are non-regular sets. Determine
if it is possible for any of the following
sets to be regular.
(a) \(A - B \) (b) \(A \cup B \) (c) \(A \cdot B \)
CHAPTER 6 - RECURSIVE FUNCTIONS

E12. Define \(\text{sign}(n) = \begin{cases} 0 & \text{if } n = 0 \\
1 & \text{if } n > 1 \end{cases} \) and

\[
\text{sign}(n) = \begin{cases} 1 & \text{if } n = 0 \\
0 & \text{if } n > 1 \end{cases}.
\]

Show that \(\text{sign} \) & \(\text{sign} \) are primitive recursive.

E13. Show that each of the following functions, that are defined below, are primitive recursive.

(i) \(\text{EXP}(x, y) = x^y \)

(ii) \(\text{ABS}(x, y) = |x - y| \)

(iii) \(\text{ZER}(x) = \begin{cases} 1 & \text{if } x = 0 \\
0 & \text{if } x > 0 \end{cases} \)

(iv) \(\text{MIN}(x, y) = \text{SMALLER \ of \ } x \ \text{&} \ y \)

(v) \(\text{MAX}(x, y) = \text{LARGER \ of \ } x \ \text{&} \ y \)

(vi) \(\text{REM}(x, y) = \text{Remainder \ after \ dividing \ } y \text{\ by} \ x \)

(vii) \(\text{QUO}(x, y) = \text{quotient \ obtained \ by \ dividing \ } y \text{\ by} \ x \)

(viii) \(\text{EQU}(x, y) = \begin{cases} 1 & \text{if } x = y \\
0 & \text{if } x \neq y \end{cases} \)

E14. Define \(\text{ls}(x, y) = \begin{cases} 1 & \text{if } x < y \ \text{and} \\
0 & \text{if } x \geq y \end{cases} \)

\[
\text{gr}(x, y) = \begin{cases} 1 & \text{if } x > y \\
0 & \text{if } x \leq y \end{cases}.
\]

Show that \(\text{ls} \) and \(\text{gr} \) are primitive recursive functions.