Special Integrating Factors

Given the O.D.E. \(M(x,y) \, dx + N(x,y) \, dy = 0 \), assume it is non-exact. Suppose that \(n(x,y) \) is an integrating factor of the equation, then

\[
n(x,y) \, M(x,y) \, dx + n(x,y) \, N(x,y) \, dy = 0
\]

is an exact equation.

Therefore,

\[
\frac{\partial}{\partial y} [n(x,y)M(x,y)] = \frac{\partial}{\partial x} [n(x,y)N(x,y)]
\]

or

\[
n(x,y) \frac{\partial M(x,y)}{\partial y} + \frac{\partial n(x,y)}{\partial y} M(x,y) = n(x,y) \frac{\partial N(x,y)}{\partial x} + \frac{\partial n(x,y)}{\partial x} N(x,y)
\]

or

\[
n(x,y) \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] = N(x,y) \frac{\partial n}{\partial x} - M(x,y) \frac{\partial n}{\partial y} \quad (1)
\]

\(n(x,y) \) is an unknown function that satisfies equation (1), but equation (1) is a partial differential equation. So, in order to find \(n(x,y) \) we have to solve a P.D.E. and we do not know how to do it.

Therefore, we have to impose some restriction on \(n(x,y) \).

Assume that \(n \) is function of only one variable, let’s say of the variable \(x \), then

\[
n(x) \quad \text{and} \quad \frac{\partial n}{\partial y} = 0, \quad \frac{\partial n}{\partial x} = \frac{dn}{dx}
\]

So, equation (1) reduces to

\[
n(x) \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] = N(x,y) \frac{dn}{dx}
\]

or

\[
\frac{1}{N(x,y)} \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] dx = \frac{dn}{n}
\]

If the left hand side of the above equation is only function of \(x \), then the equation is separable and \(n(x) = \exp \left(\int \frac{1}{N(x,y)} \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] dx \right) \).

Conclusion: The equation \(M(x,y) \, dx + N(x,y) \, dy = 0 \) has an integrating factor \(n(x) \) that depends only on \(x \) if the expression \(\frac{1}{N(x,y)} \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] \) depends only on \(x \).

Now, let’s assume the \(n \) depends only on the variable \(y \), then

\[
n(y) \quad \text{and} \quad \frac{\partial n}{\partial x} = 0, \quad \frac{\partial n}{\partial y} = \frac{dn}{dy}
\]

So, equation (1) reduces to
\[
\begin{align*}
\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} = -\frac{M(x,y)}{n(x)} \frac{dn}{dy}
\end{align*}
\]

or
\[
\frac{-1}{M(x,y)} \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] dy = \frac{dn}{n}
\]

or
\[
\frac{1}{M(x,y)} \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right] dy = \frac{dn}{n}
\]

If the left hand side of the above equation is only function of \(y \), then the equation is separable and
\[
n(y) = \exp \left(\int \frac{1}{M(x,y)} \left(\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right) dx \right).
\]

Conclusion: The equation \(M(x,y) \, dx + N(x,y) \, dy = 0 \) has an integrating factor \(n(y) \) that depends only on \(y \) if the expression \[
\frac{1}{M(x,y)} \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right]
\]
depends only on \(y \).

Remark: If neither of the above criteria is satisfied, then the equation has an integrating factor that depends on both variables \(x \) and \(y \), but it is impossible to determine at these level of the course.

Examples: Find the integrating factor

1) \((4xy + 3y^2 - x) \, dx + x(x + 2y) \, dy = 0 \)

 \[
 M(x,y) = 4xy + 3y^2 - x \quad \text{and} \quad N(x,y) = x(x + 2y)
 \]

 \[
 \frac{\partial M(x,y)}{\partial y} = 4x + 6y \quad \text{and} \quad \frac{\partial N(x,y)}{\partial x} = 2x + 2y
 \]

 \[
 \frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} = 4x + 6y - 2x - 2y = 2x + 4y
 \]

 \[
 \frac{1}{N(x,y)} \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] = \frac{1}{x(x + 2y)} (2x + 4y) = \frac{2(x + 2y)}{x(x + 2y)} = \frac{2}{x}
 \]

 Since it depends on \(x \), only, there is an integrating factor \(n(x) \), given by

 \[
 n(x) = \exp \left(\int \frac{2 \, dx}{x} \right) = \exp \left(2 \ln |x| \right) = x^2
 \]

 Multiply the original equation by \(n(x) \), we get the exact equation

 \[
 (4x^3y + 3x^2y^2 - x^3) \, dx + (x^4 + 2x^3y) \, dy = 0
 \]

 by grouping we get

 \[
 (4x^3y \, dx + x^4 \, dy) + (3x^2y^2 \, dx + 2x^3y \, dy) - x^3 \, dx = 0
 \]

 \[
 d(x^4y) + d(x^3y^2) - d(\frac{1}{4} x^4) = d(c)
 \]

 \[
 x^4y + x^3y^2 - \frac{1}{4} x^4 = c
 \]

2) \(y(x + y) \, dx + (x + 2y - 1) \, dy = 0 \)

 \[
 M(x,y) = y(x + y) \quad \text{and} \quad N(x,y) = x + 2y - 1
 \]
\[
\frac{\partial M(x,y)}{\partial y} = x + 2y \quad \text{and} \quad \frac{\partial N(x,y)}{\partial x} = 1
\]
\[
\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} = x + 2y - 1
\]
\[
\frac{1}{N(x,y)} \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] = \frac{1}{x + 2y - 1} (x + 2y - 1) = 1
\]

Since, the expression is constant, there is an integrating factor \(n(x) \)

\[
n(x) = e^{\int dx} = e^x
\]

Multiplying the original equation by \(n(x) \), we obtain the exact equation

\[
ye^x(x + y) \, dx + e^x(x + 2y - 1) \, dy = 0
\]

\[
F(x,y) = \int M(x,y) \, dx = \int \left(xy e^x + y^2 e^x \right) \, dx = y \left(xe^x - e^x \right) + y^2 e^x + B(y)
\]

\[
\frac{\partial F(x,y)}{\partial y} = N(x,y) = \frac{\partial}{\partial y} \left[y \left(xe^x - e^x \right) + y^2 e^x + B(y) \right] = xe^x - e^x + 2ye^x + B'(y)
\]

then

\[
B'(y) = 0 \quad \text{and} \quad B(y) = c
\]

The solution is: \(xe^x - e^x + 2ye^x = k \)

3) \(y(x + y + 1) \, dx + x(x + 3y + 2) \, dy = 0 \)

\(M(x,y) = y(x + y + 1) \) \quad \text{and} \quad \(N(x,y) = x(x + 3y + 2) \)

\[
\frac{\partial M(x,y)}{\partial y} = x + 2y + 1 \quad \text{and} \quad \frac{\partial N(x,y)}{\partial x} = 2x + 3y + 2
\]

\[
\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} = x + 2y + 1 - 2x - 3y - 2 = -(x + y + 1)
\]

\[
\frac{1}{N(x,y)} \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] = \frac{-(x + y + 1)}{2x + 3y + 2}
\]

consider

\[
\frac{1}{M(x,y)} \left[\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right] = \frac{1}{y(x + y + 1)} (x + y + 1) = \frac{1}{y}
\]

Since, it depends only on \(y \), there is an integrating factor \(n(y) \)

\[
n(y) = e^{\int dy} = e^{lny} = y
\]

Multiplying the original equation by \(n(y) \), we obtain the exact equation

\[
y^2(x + y + 1) \, dx + yx(x + 3y + 2) \, dy = 0
\]
\[
F(x,y) = \int M(x,y) \, dx = \int \left(xy^2 + y^3 + y^2 \right) \, dx = \frac{x^2}{2} y^2 + xy^3 + xy^2 + B(y)
\]
\[
\frac{\partial F(x,y)}{\partial y} = N(x,y) = \frac{\partial}{\partial y} \left[\frac{x^2}{2} y^2 + xy^3 + xy^2 + B(y) \right] = x^2 y + 3xy^2 + 2xy + B'(y)
\]

Then \(B'(y) = 0 \) and therefore \(B(y) = c \)

The solution is: \(\frac{1}{2} x^2 y + xy^3 + xy^2 = k. \)