Chapter 21
Lecture # 18 – Atomic Spectroscopy

Weekly Outline

Week 13 Apr. 21 Atomic Spectroscopy (Almirall)
Apr. 22 Mass Spectrometry (Almirall)

Week 14 Apr. 26 Introduction to Analytical Separation and Chromatography/ Electrophoresis
Apr. 28 Extraction; Sample Preparation

Week 15 Apr. 24 Gas Chromatography (Almirall)
Apr. 25 Liquid Chromatography and Fines Review (Almirall)

Week 16 Apr. 24 FINAL EXAM – 12:45-3:30 pm (Almirall and L. de la Vega)

Energy and Electromagnetic Radiation

Light is a particle = Photon

\[E (\text{energy of photon}) = h \nu \]

\(h \) (Planck’s constant) = \(6.626 \times 10^{-34} \) J \(\cdot \) s

\[c = \nu \lambda \Rightarrow \frac{\nu}{\lambda} = \frac{c}{\lambda} \]

\[E = \frac{hc}{\lambda} = h\nu \]

\(\nu \equiv \text{wavenumber} \)

Blackbody Radiation

\[M_{\lambda} = \frac{2\pihc^2}{\lambda^5} \left(e^{\frac{hc}{\lambda kT}} - 1 \right) \]

Energy States and UV-Vis/Fluorescence Spectroscopy

Jablonski Energy Diagram

- \(S_0 \): electronic ground state
- \(S_n \): excited states
- \(P \): photon absorption
- \(T_2 \): triplet state
- IC: internal conversion
- ISC: intersystem crossing

\(A \equiv \text{absorption} \)

\(P \equiv \text{phosphorescence} \)

Transition Process Timescale (Seconds)

- \(S(0) \Rightarrow S(1) \text{ or } S(n) \): Absorption (Excitation)
 \(\text{Instantaneous} \)
 \(10^{-15} \text{ to } 10^{-14} \)

- \(S(n) \Rightarrow S(1) \): Internal Conversion
 \(k(ic) \)
 \(10^{-14} \text{ to } 10^{-10} \)

- \(S(1) \Rightarrow S(1) \): Vibrational Relaxation
 \(k(vr) \)
 \(10^{-12} \text{ to } 10^{-10} \)

- \(S(1) \Rightarrow S(0) \): Fluorescence
 \(k(f) \text{ or } G \)
 \(10^{-9} \text{ to } 10^{-7} \)

- \(S(1) \Rightarrow T(1) \): Intersystem Crossing
 \(k(pT) \)
 \(10^{-8} \text{ to } 10^{-7} \)

- \(S(1) \Rightarrow S(0) \): Non-Radiative Relaxation Quenching
 \(k(nr), k(q) \)
 \(10^{-7} \text{ to } 10^{-5} \)

- \(T(1) \Rightarrow S(0) \): Phosphorescence
 \(k(p) \)
 \(10^{-3} \text{ to } 100 \)

- \(T(1) \Rightarrow S(0) \): Non-Radiative Relaxation Quenching
 \(k(nr), k(qT) \)
 \(10^{-3} \text{ to } 100 \)
Spectroscopy vs. Spectrometry

Spectroscopy is “the study of the interaction between electromagnetic radiation and matter.”

Spectrometry is “the measure of these interactions.”

Atomic Spectroscopy

“determination of elemental composition”

Sample → Atomization → Excited States → Ground State

Atomic Absorption

- Hollow Cathode (made of element being analyzed)
- Insulating Disk
- Ne/Ar + Wavelength
- Intensity
- Bandwidth

Atomization

1. Flame
2. Furnace (e.g. graphite furnace)
3. Plasma (e.g. Inductively Coupled Plasma)
Flame Atomization

- Oxidant (e.g., air)
- Fuel (e.g., acetylene)
- Premix Burner

Graphite Furnace

- Pre-Concentration
- Sample Volume: 1-100 µL
- Detection Limit: 0.02-0.06 ng/mL

1. **Pre-Concentration**
2. **Automated Injection**
3. **Transverse Heating**
4. **Matrix Modifiers**
 - Matrix More Volatile
 - Analyte Less Volatile

Graphite Furnace

- Dry
- "Char" (pyrolysis)

Graphite furnace

- Front View
- Sample (~1 µL)
- Pre-Concentration (= multiple sample applications)

Graphite furnace

- Top View
- Time-Integrated Absorbance

Graphite Furnace

- Time (s)
- Temperature (°C)
Analysis of Mercury by Cold Vapor Atomic Fluorescence

Inductively Coupled Plasma (ICP)

Plasma Tube (ionized Ar collide with atoms; transfer energy)

Quartz

Inductively Coupled Plasma (ICP)

can measure as many as ~70 elements simultaneously

Comparison of Detection Limits for Ni+ Ion (at 231 nm)*

<table>
<thead>
<tr>
<th>Detection Technique</th>
<th>Limits (ng/mL = ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP/atomic emission</td>
<td>3-50</td>
</tr>
<tr>
<td>ICP/atomic emission (pneumatic nebulizer)</td>
<td>0.3-4</td>
</tr>
<tr>
<td>Graphite Furnace/atomic absorption</td>
<td>0.02-0.06</td>
</tr>
<tr>
<td>ICP/mass spectrometry</td>
<td>0.001-0.2</td>
</tr>
</tbody>
</table>

Sensitivity of Atomic Spectroscopy

Note: Atomic Fluorescence (of Hg) < 0.1 ppt
Boltzmann Distribution

\[
\frac{N_e}{N_o} = \frac{g_e e^{-\Delta E/kT}}{g_o}
\]

\(N_e/N_o = \text{Relative Population of Excited/Ground States}\)

\(g_e, g_o = \text{“degeneracy” (number of states)}\)

\(T = \text{Temperature (K)}\)

\(k = \text{Boltzmann Constant (1.381 x 10^{-23} J/K)}\)

\(\Delta E = \text{Excited State (Ex: } g = 3 \text{ states)}\)

\(E_o = \text{Ground State (Ex: } g_o = 2 \text{ states)}\)

Effect of Energy Difference and Temperature on population of excited states

<table>
<thead>
<tr>
<th>Wavelength difference of states (nm)</th>
<th>Energy difference of states (J/atom)</th>
<th>Excited-state fraction ((N_e/N_o))*</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>(7.95 \times 10^{-19})</td>
<td>0.80 x 10^{-3}</td>
</tr>
<tr>
<td>500</td>
<td>(3.97 \times 10^{-19})</td>
<td>0.85 x 10^{-3}</td>
</tr>
<tr>
<td>750</td>
<td>(2.65 \times 10^{-19})</td>
<td>0.88 x 10^{-3}</td>
</tr>
</tbody>
</table>

Based on the equation \(N_e/N_o = (g_e/g_o) e^{-\Delta E/kT}\) *in which* \(g^* = g_o = 1\).*

“Bandwidth” in Spectroscopy

- Bandwidth \(\approx 10^{-2}\) nm

Linewidth in Atomic Spectroscopy

Heisenberg Uncertainty Principle: “the shorter the lifetime of the excited state, the more uncertain is its energy”

\[
\delta E \delta t \geq \frac{\hbar}{4\pi}
\]

- \(\delta E = \text{Uncertainty in Energy}\)
- \(\delta t = \text{Lifetime of the Excited State}\)
- \(\hbar = \text{Planck’s Constant (6.6 x 10^{-34} J \cdot s)}\)

Example: Atomic Absorption Intrinsic Linewidth @ 10^{-4} nm

\[
\begin{align*}
\delta t &\approx 10^{-9} \text{ s} \Rightarrow \frac{\delta E}{\delta t} \geq \frac{\hbar}{4\pi} \\
&= \frac{(6.6 \times 10^{-34} \text{ J} \cdot \text{s})}{(4\pi)} \approx 10^{-25} \text{ J} \cdot \text{s} \\
\Delta E &= \hbar \lambda = 4.0 \times 10^{-19} \text{ J} \cdot \text{s} \\
(\text{e.g. 500 nm})
\end{align*}
\]

\[
\begin{align*}
\frac{\delta E}{\Delta E} &= \frac{(10^{-25})}{(4.0 \times 10^{-19})} \\
&= 2 \times 10^{-7}
\end{align*}
\]

\[
\begin{align*}
\frac{\delta \lambda}{\lambda} &= (2.5 \times 10^{-7})/(500) \approx 10^{-4}
\end{align*}
\]
“Linewidth” in Atomic Spectroscopy

Linewidth Broadening

1. Doppler Effect
 \[\delta \lambda = \frac{\lambda}{c} \left(\frac{v}{c} \right)^2 \ \text{eV} \]
 where \(\lambda \) is the wavelength, \(c \) is the speed of light, \(v \) is the velocity of the atom, and the factor \(\left(\frac{v}{c} \right)^2 \) is the Doppler factor.

 Example: \(\delta \lambda = 300 \text{ nm} \) for Fe (M = 56 amu) at 2500 K.

2. Pressure Broadening
 \[\delta \lambda \approx \frac{2}{3} \lambda \left(\frac{T}{M} \right)^{1/2} \]
 where \(T \) is the temperature in Kelvin and \(M \) is the molecular mass in amu.

Example:

\[\delta \lambda = 300 \text{ nm} \left(\frac{2}{3} \right) \left(\frac{7 \times 10^{-7}}{56} \right)^{1/2} = 0.0014 \text{ nm} \]

LIBS Setup

Nd:YAG ns lasers
- Big Sky Laser 1064nm
- 220 mJ max energy

New Wave Research 3rd Harmonic 266nm
- 27 mJ max energy

Collection optics
- perpendicular to sample surface

Andor Mechelle iCCD Camera
- (200-900nm)
- Computer controlled xyz sample stage

Plasma Evolution

Early stages dominated by broadband continuum 0-1.0 \(\mu \)s
Rapid expansion and cooling
Neutral and ionic dominated emission

LIBS for Forensics

Advantages
- Large amount of information obtained
- Qualitative and quantitative
- Almost non-destructive direct solid sampling
- Speed, versatility, ease of operation, affordability and portability
- Good detection limits (~ 10 ppm - 50 ppm)

Challenges
- Calibration
- Matrix effects

NIST Standard Reference Materials
- 610 = 515 ppm Sr
- 1831 = 112 ppm Sr

Interference

1. Spectral Interference
 - Background (e.g. optical scattering, residual smoke, other elements)
 - Zeeman or D2 Background Correction

2. Chemical Interference
 - “any component of the sample that decreases the extent of atomization of analyte”

3. Ionization Interference
 - \(M(g) \leftrightarrow M^+(g) + e^- \)
 \[K = \frac{[M^+][e^-]}{[M]} \]
 - Ionization Supressors (more easily ionized)
ICP-Mass Spectrometry

<table>
<thead>
<tr>
<th>Method</th>
<th>Detection Limit (ppt)</th>
<th>Linear Range</th>
<th>Sample Volume</th>
<th>Sample Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame Absorption</td>
<td>10-1000</td>
<td>10^3</td>
<td>Large</td>
<td>10-15 s/element</td>
</tr>
<tr>
<td>Furnace Absorption</td>
<td>0.01-1</td>
<td>10^3</td>
<td>Very Small</td>
<td>3-4 min/element</td>
</tr>
<tr>
<td>Plasma Emission</td>
<td>0.1-10</td>
<td>10^3</td>
<td>Medium</td>
<td>3-4 min/element</td>
</tr>
<tr>
<td>Plasma-Mass Spec</td>
<td>0.00001-0.0001</td>
<td>10^3</td>
<td>All elements</td>
<td>2-5 min/element</td>
</tr>
</tbody>
</table>

Atomic Fluorescence

ICP-MS

ICP-Mass Spectrometry

Atomic Fluorescence

ICP-MS

ICP-Mass Spectrometry
HR-ICP-MS (ELEMENT 2)

Chapter 21

Assigned Problems: 21-4, 21-7, 21-9, 21-11, 21-18