1.

\[\hat{\mathbf{V}} = \frac{\mathbf{r}}{r^3} \cdot \mathbf{E}_r \]

\[u_{2s} = N \left(2 - \frac{n}{a_0} \right) e^{-r/2a_0} \]

\[u_{2s} = N \left(2 - r \right) e^{-r/2} \]

\[\frac{1}{4\sqrt{\pi}} \]

\[\langle \mathbf{V} \rangle = \int u_{2s} \mathbf{V} \, d\mathbf{r} = \int \int \int N(2-n)e^{-\frac{r}{a_0}} (-\frac{1}{r}) N(2-n)e^{-\frac{r}{2a_0}} \, r \, dr \, dz \, dy \]

\[= -4\pi N^2 \int_0^\infty r(2-r) e^{-r} \, dr \]

\[= -4\pi N^2 \left[4 \int_0^\infty e^{-r} \, dr - 4 \int_0^\infty r^2 e^{-r} \, dr + \int_0^\infty r^3 e^{-r} \, dr \right] \]

\[= -4\pi \left(\frac{1}{3r} \right) \left[4 \left(\frac{1}{1^2} \right) - 4 \left(\frac{2}{1^3} \right) + \frac{3!}{2!} \right] \]

\[= -\frac{1}{8} \left(4 - \frac{8}{9} \right) \]

\[= -\frac{1}{4} a.u. \quad = -\frac{1}{4} E_h \quad = 1.09 eV \]

Recall \(\langle H \rangle \) (apart from \(\hbar^2 \)), \(\langle E \rangle = -\frac{1}{8} E_h \quad (=-\frac{1}{2}\hbar^2 E_h) \)

\[\Rightarrow \langle T \rangle = \langle E \rangle - \langle V \rangle = +\frac{1}{8} E_h \quad \text{(kinetic plus potential)} \]
2. Atkins Exercise 9.12(b)

Orbital angular momentum is

\[\langle \hat{L}^2 \rangle^{1/2} = \hbar(l(l + 1))^{1/2} \]

There are \(l \) angular nodes and \(n - l - 1 \) radial nodes.

(a) \(n = 4, \ l = 2 \), so \(\langle \hat{L}^2 \rangle^{1/2} = 6^{1/2} \hbar = \frac{2.45 \times 10^{-34}}{} \text{J s} \)

\[2 \text{ angular nodes} \quad 1 \text{ radial node} \]

(b) \(n = 2, \ l = 1 \), so \(\langle \hat{L}^2 \rangle^{1/2} = 2^{1/2} \hbar = \frac{1.49 \times 10^{-34}}{} \text{J s} \)

\[1 \text{ angular nodes} \quad 0 \text{ radial nodes} \]

(c) \(n = 3, \ l = 1 \), so \(\langle \hat{L}^2 \rangle^{1/2} = 2^{1/2} \hbar = \frac{1.49 \times 10^{-34}}{} \text{J s} \)

\[1 \text{ angular node} \quad 1 \text{ radial node} \]

3. Atkins Exercise 9.13(b)

See Figures 8.35 and 9.16 as well as Table 8.2 of the text. The number of angular nodes is the value of the quantum number \(l \), which for d orbitals is 2. Hence, each of the five d-orbitals has two angular nodes. To locate the angular nodes look for the values of \(\theta \) that make the wavefunction zero.

\(d_x^2 \) orbital: see eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The nodal planes are difficult to picture. \[\theta = 0.95532 \] is the angular node for both planes.

\(d_{xy} \) orbital: see eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The two nodal planes are the \(xz \) and \(yz \) planes, and \[\theta = 0 \] is the angular node for both planes.

\(d_{yz} \) orbital: see eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The two nodal planes are the \(xz \) and \(xy \) planes, and \[\theta = 0 \text{ and } \pi/2 \] respectively, are the angular nodes of these planes.

\(d_{xz} \) orbital: see eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The two nodal planes are the \(yz \) and \(xy \) planes, and \[\theta = 0 \text{ and } \pi/2 \] respectively, are the angular nodes of these planes.

\(d_{x^2-y^2} \) orbital: see eqn 9.23, Table 8.2, and Figures 8.35 and 9.16. The two nodal planes at \(\phi = \pi/4 \) and \(\phi = 3\pi/4 \) respectively, and \[\theta = 0 \] is the angular node of both of these planes.
4.

\[\psi = N(27 - 18r + 2r^2) e^{-r/3} \]

(a) \# radial nodes = 2 (the solution to: \(27 - 18r + 2r^2 = 0\))

(b) \(l = 0, m = 0\) because the wavefunction has no angular dependence

(c) \(n = 3\) because total \# nodes = \(n - 1\)

(there are no angular nodes because \(l = 0\))

\[F_n = \frac{\hbar^2}{2m} = -\frac{1}{18} \text{ a.u.} \]

\(n = 3\)

(d) Classical turning radius is value of \(r\) for which \(E = V\) (and consequently \(T = \text{kin. en.} = 0\)).

In atomic units, \(1 \text{ eV} = \frac{\hbar}{m} \)

\[-\frac{1}{18} = -\frac{1}{r} \]

\(r = 18 \text{ a.u.} = 9.52 \text{ Å} \)

Atomic unit of length = \(a_0 = 0.529 \text{ Å}\)

5. Atkins Exercise 9.14(b)

(a) \(5d \rightarrow 2s\) is [not] an allowed transition, for \(\Delta l = -2\) (\(\Delta l\) must equal \(\pm 1\)).

(b) \(5p \rightarrow 3s\) is [allowed], since \(\Delta l = -1\).

(c) \(5p \rightarrow 3f\) is [not] allowed, for \(\Delta l = +2\) (\(\Delta l\) must equal \(\pm 1\)).
6. Atkins Problem 9.27

\[E_n = \frac{-Z^2 e^4}{32 \pi^2 \hbar^2 n^2} \text{ where } Z = 2 \text{ (atomic number)} \]

\[E_n = -\frac{e^4}{m_e n^2} \left(\frac{4 \pi^2}{32 \pi^2} \right) \]

\[m_e = 9.10938 \times 10^{-31} \text{ kg} \]

\[m_n = m_e + m_p = 2 (1.67493 + 1.67262) \times 10^{-27} \text{ kg} \]

\[m_p = 6.656/20 \times 10^{-27} \]

\[\frac{m_n}{m_e} = 9.999640 \times 10^{-1} = 0.9999640 \]

\[m_3^3 = m_3^1 \times 2 + m_3^2 = 5.210170 \times 10^{-27} \text{ kg} \]

\[\frac{m_3^3}{m_3^1} = 0.999946 \]

For \(n = 3 \rightarrow n = 2 \) transition, \(\delta = \frac{\hbar c}{\lambda} (E_3 - E_2) \)

\[n = 2 \rightarrow n = 1 \]

\[E_1^3 = 60958.5 \text{ cm}^{-1} \]

\[E_1^1 = 60953.78 \text{ cm}^{-1} \]

\[E_2^3 = 329165.26 \text{ cm}^{-1} \]

\[E_2^1 = 329150.68 \text{ cm}^{-1} \]
Total wave function must be antisymmetric with respect to interchange of any two electrons.

\(\psi = |s(1) s(1)\rangle \) is symmetric

\(\Rightarrow \) spin part must be antisymmetric

\(|s(1) s(2)\rangle - |s(2) s(1)\rangle \) is antisymmetric

\(\Rightarrow \) spin part must be symmetric.

Then we form two-electron spin function that are symmetric or antisymmetric with respect to interchange of two electrons:

\[
\begin{align*}
&\frac{1}{\sqrt{2}} [\psi_1 \psi_1 + \psi_2 \psi_2] \\
&\frac{1}{\sqrt{2}} [\psi_1 \psi_2 - \psi_2 \psi_1]
\end{align*}
\]

\(\psi \) is antisymmetric

\(\frac{1}{\sqrt{2}} [\psi_1 \psi_2 - \psi_2 \psi_1] \) is antisymmetric.

Total wave function:

\[
\frac{1}{\sqrt{2}} [\psi_1 \psi_1 + \psi_2 \psi_2]
\]

\(\psi \) is symmetric

\(\frac{1}{\sqrt{2}} [\psi_1 \psi_2 - \psi_2 \psi_1] \) is antisymmetric.
If we ignore the electron repulsion, the energy of each electron is the same as in a hydrogenic (i.e.,
\text{hydrogen-like}) atom or ion with \(\ell = 3 \) (c). The total energy is the sum

\[
E_{\text{electron}} = -\frac{\epsilon^2}{\ell^2 n^2} \sum_{n=1}^{\ell=3} \quad = -\frac{9}{2} E_1
\]

\[
E_{\text{electron}} = -\frac{9}{2} E_1
\]

\[
E = -\frac{18}{2} E_1 = -9 E_1
\]

The actual energy will be higher because the electron repulsion energy, which we have ignored, is positive.