1. (a) Let X be a set with more than one element. Show that there exists a metric d on X, so that the topology generated by d is the discrete topology on X.

(b) Let X be a set with more than one element. Show that for no metric d on X, the topology generated by d is the same as the trivial topology on X.

(c) Let $X = \{a, b, c\}$. Give an example of a topology on X, other than the trivial topology, that cannot be the topology generated by a metric on X.

2. (a) Consider \mathbb{R}_l, that is, \mathbb{R} endowed with the lower limit topology (see notes or textbook). Show that a sequence $\{x_n\}_n$ converges to x in the lower limit topology if and only if $\{x_n\}_n$ converges to x in the standard topology and $x_n \geq x$ for all except finitely many values of n.

(b) Consider \mathbb{R}_K, that is, \mathbb{R} endowed with the topology T_K (see notes or textbook). Formulate and prove the equivalent condition for the convergence of a sequence in \mathbb{R}_K.