2 (b), (c), page 78. (b) The functions \(g(x) = 1 - x \), \(h(x) = 1 + x \) are continuous on \([0, 1]\) and \(h(x) \neq 0 \) for any \(x \in [0, 1] \). By Theorem 3.22, it then follows that \(f(x) = g(x)/h(x) \) is continuous on \([0, 1]\). \(\square \)

(c) As in part (b), using Theorems 3.22 and 3.24, the function \(f(x) \) is continuous at any \(x \neq 0 \). The only issue is the continuity at 0. But since the function \(\sin(1/x) \) is bounded and \(\sqrt{x} \to 0 \) as \(x \to 0_+ \), from the squeeze theorem for functions (Theorem 3.9 (ii)) it follows that \(\lim_{x \to 0_+} \sqrt{x} \sin(1/x) = 0 \). \(\square \)

4, page 78. The condition \(f(a) < M \) is equivalent to \(M - f(a) > 0 \). Because \(f(x) \) is continuous at \(a \), there exists \(\delta > 0 \) such that

\[-(M - f(a)) < f(x) - f(a) < M - f(a), \quad \forall x \in (a - \delta, a + \delta).\]

The right side of this inequality implies that \(f(x) < M, \quad \forall x \in (a - \delta, a + \delta). \) \(\square \)