5. page 92. (a) If \(f \) is differentiable at \(a \) then \(f \) is continuous at \(a \). Since \(f(a) \neq 0 \), it follows from a result done in Chapter 3 (see lemma 3.28, or Ex. 4, p. 78) that \(f(x) \neq 0 \), for any \(x \) in an interval \(I = (a - \delta, a + \delta) \) around \(a \). Thus for any \(h \in (-\delta, \delta) \), \(f(a + h) \neq 0 \). □

(b) We need to show that the limit
\[
\lim_{h \to 0} \frac{\frac{1}{f(a+h)} - \frac{1}{f(a)}}{h}
\]
exists, and is equal to \(- \frac{f'(a)}{f^2(a)}\).

As \(f(a) \neq 0 \), we have that \(\frac{1}{f(a)} \) is well defined and, from part (a), also \(\frac{1}{f(a+h)} \) is well defined for \(h \) small enough. Then
\[
\lim_{h \to 0} \frac{\frac{1}{f(a+h)} - \frac{1}{f(a)}}{h} = \lim_{h \to 0} \left(\frac{f(a) - f(a + h)}{h} \cdot \frac{1}{f(a)f(a+h)} \right) = - \frac{f'(a)}{f^2(a)},
\]
where the first equality is obtained after elementary algebra and the second follows from the definition of the derivative at \(a \) and the fact that \(f \) is also continuous at \(a \). Thus
\[
\left(\frac{1}{f} \right)'(a) = - \frac{f'(a)}{f^2(a)}. \quad □
\]

5. page 100. (a) Let \(x \in \mathbb{R} \setminus 0 \) arbitrary. The conditions to apply the Mean Value Theorem for \(f \) on the interval between 0 and \(x \) are satisfied, so there exists \(y \) (between 0 and \(x \)) such that
\[
f(x) - f(0) = f'(y)(x - 0).
\]
Thus, from the assumption, it follows that \(f(x) - f(0) = 0 \), for all \(x \in \mathbb{R} \). □

(b) The inequality trivially holds for \(x = 0 \) (it’s actually equality in this case). Again let \(x \in \mathbb{R} \setminus 0 \) arbitrary and apply the Mean Value Theorem for \(f \) on the interval between 0 and \(x \). There exists \(y \) such that \(f(x) - f(0) = f'(y)(x - 0) \), and given the hypothesis in this case implies
\[
|f(x) - 1| = |f'(y)||x| \leq |x|.
\]
But by triangle inequality \(|f(x)| - 1 \leq |f(x) - 1|\), so combining these we get \(|f(x)| \leq |x| + 1, \forall x \in \mathbb{R} \). □
(c) Let $a < b$ arbitrary. By the Mean Value Theorem for f on the interval $[a, b]$, there exists $c \in (a, b)$ such that $f(b) - f(a) = f'(c)(b - a)$. But by assumption $f'(c) \geq 0$, and $b - a > 0$, so it follows that $f(b) - f(a) \geq 0$. □