1. (5 pts) (Pb. 59, section 1.3): Let A and B integers and let D be a positive integer.
(a) Prove the following: If D divides A and D divides B, then D divides both $A + B$ and $A - B$.
(b) Is the converse of proposition given in (a) true? If so, prove it; if not, give a counter-example.

2. (5 pts) Suppose T is a set of real numbers. We say that a real number l is a lower bound for T if $l \leq t$, for all $t \in T$. We say that a number m is the greatest lower bound of the set T if m is a lower bound for T and for any $\epsilon > 0$, $m + \epsilon$ is not a lower bound for T.
(a) Without using any negative words, rewrite the meaning of “m is the greatest lower bound of the set T”.
(b) Without using any negative words, rewrite the meaning of “y is not the greatest lower bound of the set T”.

Note: This is a complement of the exercise 45 in section 1.3 of your textbook.