Problems for Fermat’s and Euler’s Theorems

1. If \(p \) is prime, then, for all \(a \), \(a^p \equiv a \ (mod \ p) \).

2. What can you say about \(n \) and \(m \) if:
 (a) \(n^{96} \equiv m \ (mod \ 17) \)?
 (b) \(n^9 \equiv m \ (mod \ 19) \)?

3. (a) Show: if \(7 \nmid n \), then \(7 \mid (n^{12} - 1) \).
 (b) Show: \(n^{13} - n \) is divisible by \(2, 3, 5, 7, 13 \), for all natural numbers \(n \).

4. (a) Find the remainder of the sum \(1 + a + a^2 + a^3 + \ldots + a^9 \mod 11 \), for each number \(a < 11 \). Can you explain the outcome?
 (b) Make a theorem generalizing the statement from part (a) and prove your theorem.

5. Let \(N = \overline{111\ldots11} \), where \(N \) is a number in base 10, made up of \(p \) 1’s and where \(p \) is a prime other than 3. Show that \(N \equiv 1 \ (mod \ p) \).

6*. Let \(a, b \) be natural numbers such that \(gcd(a, b) = 1 \). Show that there exist numbers \(m, n \in \mathbb{N}^* \) such that
 \[a^m + b^n \equiv 1 \ (mod \ ab). \]