Assumptions

\(H_0: \ p = p_0 \)

A binomial experiment with \(n = \) _____ was performed. Since \(np \) and \(nq \) are both at least 5, the sample is large enough to indicate that the sampling distribution of \(\hat{p} \) is approximately normal.

\(H_0: \ p_1 = p_2 \)

Independent binomial experiments with \(n_1 = \) _____ and \(n_2 = \) _____ were performed. Since \(n_1p_1, n_1q_1, n_2p_2 \) and \(n_2q_2 \) are all at least 5, the samples are large enough to indicate that the sampling distributions of \(\hat{p}_1 \) and \(\hat{p}_2 \) are both approximately normal.

\(H_0: \ \mu = \mu_0 \)

Since \(n \geq 30 \), the sampling distribution of \(\bar{x} \) is approximately normal.

OR

\(X \) is normally distributed.

\(H_0: \ \mu_1 - \mu_2 = D_0 \)

The samples were chosen independently and randomly. Since \(n_1 \) and \(n_2 \geq 30 \), the sampling distributions of \(\bar{x}_1 \) and \(\bar{x}_2 \) are approximately normal.

OR

The samples were chosen independently and randomly. Both \(X_1 \) and \(X_2 \) are normally distributed. Their variances are equal.

OR

The samples were chosen independently and randomly. Both \(X_1 \) and \(X_2 \) are normally distributed.

\(H_0: \ \mu_0 = \mu_1 - \mu_2 = \mu_{D0} \)

Since \(n \geq 30 \), the sampling distribution of \(\bar{x}_0 \) is approximately normal.

OR

\(X_0 = X_1 - X_2 \) is normally distributed.

\(H_0: \ p_i = p_{i0} \) for each \(i \)

The sample was chosen randomly and independently. The expected number in each cell is at least 5.

\(H_0: \ p_{i,j} = p_{i0}p_{j} \) for each \(i \) and \(j \)

The \(j \) samples were randomly and independently chosen. The expected number in each cell is at least 5.

\(H_0: \ p_{i,j} = p_ip_j \) for each \(i \) and \(j \)

The objects were randomly and independently chosen from the population of interest. The expected number in each cell is at least 5.