Two-way ANOVA: JxK factorial design

MODEL: \(y_{ijk} = \mu + \alpha_j + \beta_k + (\alpha\beta)_{jk} + \epsilon_{ijk} \)

\(\mu_{11} \)	\(\mu_{21} \)	\(\mu_{31} \)	\(\mu_{41} \)
\(\mu_{12} \)	\(\mu_{22} \)	\(\mu_{32} \)	\(\mu_{42} \)
\(\mu_{13} \)	\(\mu_{23} \)	\(\mu_{33} \)	\(\mu_{43} \)
\(\mu_{14} \)	\(\mu_{24} \)	\(\mu_{34} \)	\(\mu_{44} \)

\[\Sigma_j \mu_{jk} = \mu_j \quad \Sigma_k \mu_{jk} = \mu_k \quad \Sigma_j \Sigma_k \mu_{jk} = \mu \]

\[\Sigma_j \alpha_j = 0 \quad \Sigma_k \beta_k = 0 \quad \Sigma_j (\alpha\beta)_{jk} = 0 \quad \Sigma_j (\alpha\beta)_{jk} = 0 \]

The JxK factorial design is One-way CRD with JK levels of the treatment:

with \(\tau_{jk} = \alpha_j + \beta_k + (\alpha\beta)_{jk} \) for cell \(jk \).

There are four null hypotheses that one might test.

First: \(\tau_{jk} = 0 \) for all \(j \) and \(k \)

Second: \((\alpha\beta)_{jk} = 0 \) for each \(j \) and \(k \).

Third: \(\alpha_j = 0 \) for all \(j = 1, 2, \ldots, J \)

Fourth: \(\beta_k = 0 \) for all \(k = 1, 2, \ldots, K \)