Chebyshev’s Theorem: The proportion of any set of data lying within K standard deviations of the mean is always at least $1 - \frac{1}{K^2}$, where $K > 1$.

Expected Value (mean of a probability distribution)

- **Key Words:** Find the Expected Value
- **Formulas:** $E(X) = \mu = \sum x \cdot P(x)$ (see table below)

<table>
<thead>
<tr>
<th>x</th>
<th>$P(x)$</th>
<th>$x \cdot P(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$\sum x \cdot P(x)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Problems Dealing With the Normal Distribution (they say normally distributed in the directions…)

There are three cases

1. Directions say: Find the probability of randomly selecting a …
 - Draw the bell curve, label the mean, and standard deviation
 - Put a Z number line and an X number line at the bottom of the curve
 - Shade the desired area that you are looking for
 - Convert your x – score into a z-score using $Z = \frac{X - \mu}{\sigma}$
 - Look your z-score up on the table from the book (that is the area from your z-score to the mean on the curve)
 - If necessary perform the arithmetic needed to get your desired area

2. Directions say: Find the probability of randomly selecting n … that have an average …
 - Draw the bell curve, label the mean, and standard deviation **do not forget that for this problem the stan. dev. becomes $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$**
 - Put a Z number line and an \bar{X} number line at the bottom of the curve
 - Shade the desired area that you are looking for
 - Convert your \bar{X} – score into a z-score using $Z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$
 - Look your z-score up on the table from the book (that is the area from your z-score to the mean on the curve)
 - If necessary perform the arithmetic needed to get your desired area

3. Directions say: Find the score (height, weight, …) that separates the bottom…
 - Draw the bell curve, label the mean, and standard deviation **Do not forget that for this problem we will be putting an area associated with a given percentile (using the normal table in reverse)**
 - Put a Z number line and an X number line at the bottom of the curve
 - Look up the necessary area to get your z – score on the Z table (watch your sign on the z-score)
 - Convert your z– score into an X-score using $X = Z \sigma + \mu$
Confidence Interval

Steps to Create a Confidence Interval for the mean (Large Sample)
1. List all given sample data from the problem including sample size and C-level
2. Find \(z_{a/2} \)
3. Calculate the margin of error, \(E = z_{a/2} \left(\frac{\sigma}{\sqrt{n}} \right) \)
4. Calculate \([\bar{x} - E, \bar{x} + E]\)

Steps to Create a Confidence Interval for the mean (Small Sample)
1. List all given sample data from the problem including sample size and C-level
2. Find \(t_{a/2} \)
3. Calculate the margin of error, \(E = t_{a/2} \left(\frac{s}{\sqrt{n}} \right) \)
4. Calculate \([\bar{x} - E, \bar{x} + E]\)

Steps to test a hypothesis:
1. Express the original claim symbolically
2. Identify the Null and Alternative hypothesis
3. Record the data from the problem
4. Calculate the test statistic using either \(z = \frac{\bar{x} - \mu_0}{\sigma \sqrt{n}} \) or \(t = \frac{\bar{x} - \mu_0}{s \sqrt{n}} \) or \(\rho = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} \)
5. Determine your rejection region (or find your p-value).
6. Find the initial conclusion
7. Word your final conclusion

Steps to creating a Confidence Interval for a population proportion:
1. Gather sample data: \(x \) (or \(\hat{p} \)), \(n \), and C-level, calculate \(\hat{p} = \frac{x}{n} \) & \(1 - \hat{p} = \hat{q} \)
2. Find \(Z_{a/2} \)
3. Calculate the Margin of Error, \(E = Z_{a/2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \)
4. Finally, form \([\hat{p} - E, \hat{p} + E]\)

Sample Size for Estimating the Mean:
\[
n = \left(\frac{z_{a/2} \sigma}{E} \right)^2
\]