Ch. 4 - Networks & Flows

§1

Legal flows and capacity of cuts.

Def. A network is a 4-tuple $N = (G, s, t, c)$ where $G = (V, E)$ is a digraph with two distinguished vertices s & t (called the source & sink respectively) and $c : E \rightarrow \mathbb{R}^*$ is a function called the capacity function. (\mathbb{R}^* = set of non-negative reals)

Ex. 1

Here an arrow "→" to indicate the source s and a double circle to indicate the sink.

Def. A legal flow in a network N is a function $f : E \rightarrow \mathbb{R}^*$ such that

(a) $f(e) \leq c(e)$ for each $e \in E$ (capacity constraint) &
(b) $\sum_{e \in \text{In}(v)} f(e) = \sum_{e \in \text{Out}(v)} f(e)$ for each $v \in V - \{s, t\}$, where $\text{In}(v)$ = set of all edges in G coming into the vertex v & $\text{Out}(v)$ = set of all edges in G going out of the vertex v.

Def. The value of a legal flow, f, in a network N is defined by

$\text{Val}(f) = \sum_{e \in \text{In}(t)} f(e) - \sum_{e \in \text{Out}(t)} f(e)$

So $\text{Val}(f)$ = net flow into t.
Notice that for each of the vertices a, b, c, d the flow coming in is equal to the flow coming out. For example: \[
\sum_{e \in \text{In}(c)} f(e) = \sum_{e \in \text{Out}(c)} f(e) = f(sc) + f(tc) - f(c) = 9 + 4 - 13 = 0.
\]

Observe also that
\[
\text{Val}(f) = \sum_{e \in \text{In}(a)} f(e) - \sum_{e \in \text{Out}(a)} f(e) = f(bt) + f(dt) - f(t) = 10 + 10 - 4 = 16.
\]

Finally note that
\[
\sum_{e \in \text{Out}(s)} f(e) - \sum_{e \in \text{In}(s)} f(e) = f(sa) + f(sc) - 0 = 7 + 9 = 16 = \text{Val}(f)
\]

Q: Given a network N, how can we find a legal flow \(f_0 \) in N such that \(\text{Val}(f_0) \geq \text{Val}(f) \) for all other legal flows \(f \) in N?

Def. A source-separating set of vertices in a network N is any set of vertices \(U \subseteq V(G) \) such that \(s \notin U \) and \(t \notin U \). We define the complement \(\overline{U} \) of U by \(\overline{U} = V(G) - U \).

Def. Let \(U \) be a source-separating set of vertices in \(N \). The cut determined by \(U \) is defined by \(\text{cut}(U) = \text{In}(U) \cup \text{Out}(U) \) where \(\text{In}(U) = \text{set of all edges in } G \text{ from } U \text{ to } \overline{U} \), and \(\text{Out}(U) = \text{set of all edges in } G \text{ from } U \text{ to } \overline{U} \).
Let N be a network and U be a source-separating set of vertices. We define the capacity of the cut determined by U by
\[c(\text{Cut}(U)) = \sum_{e \in \text{Out}(U)} c(e) \] (i.e., sum of outward capacities).

We also define $\text{MinCut}(N)$ by
\[\text{MinCut}(N) = \min \{ c(\text{Cut}(U)) : U \text{ is a source-separating set of vertices in } N \} \]

Example 3

Let N be the network below.

(a) Then $U = \{ s, d \}$ is a source-separating set of vertices.

(b) $\text{Cut}(U) = \text{In}(U) \cup \text{Out}(U)$
\[= \{ d \} \cup \{ s, a, b, t \} = \{ d, s, a, t \} \]

(c) $c(\text{Cut}(U)) = \sum_{e \in \text{Out}(U)} c(e) = c(sa) + c(dt) = 6 + 7 = 15$.

(d) $c(\text{Cut}\{s, a\}) = 23$, $c(\text{Cut}\{s, a, b\}) = 24$, $c(\text{Cut}\{s, b, d\}) = 25$
\[c(\text{Cut}\{s, a, d\}) = 22, \quad c(\text{Cut}\{s, b, d\}) = 27, \quad c(\text{Cut}\{s\}) = 16 \]
\[c(\text{Cut}\{s, d\}) = 15, \quad c(\text{Cut}\{s, a, b, d\}) = 21. \]

Since there are only 8 possible source-separating sets of vertices (all the subsets of $\{a, b, d\}$ plus $\{s\}$), it follows that
\[\text{MinCut}(N) = 15. \]

Remark: If G has $n+2$ vertices, then the network N will have 2^n different source-separating sets of vertices. So it will be no easy task to find $\text{MinCut}(N)$ directly from the definition. Hence we need a fast algorithm for it.
Prop. 1 Let \(U \) be any source-separating set of vertices in a network \(N \) and \(f \) be a legal flow in \(N \). Then \[
\text{Val}(f) = \sum_{e \in \text{Out}(U)} f(e) - \sum_{e \in \text{In}(U)} f(e).
\]

Proof: Let \(U = \{s = x_1, x_2, \ldots, x_k\} \) & \(\overline{U} = \{t = y_1, y_2, \ldots, y_n\} \)

Then from the definition of \(\text{Val}(f) \) we have \[
\text{Val}(f) = \sum_{i=1}^{k} \left(\sum_{e \in \text{In}(y_i)} f(e) - \sum_{e \in \text{Out}(y_i)} f(e) \right) \quad \cdots (1)
\]

Also by the conservation of flow for \(y_1, \ldots, y_n \) we have \[
0 = \sum_{e \in \text{In}(y_i)} f(e) - \sum_{e \in \text{Out}(y_i)} f(e) \quad \cdots (2)
\]

\[
0 = \sum_{i=1}^{n} \left(\sum_{e \in \text{In}(y_i)} f(e) - \sum_{e \in \text{Out}(y_i)} f(e) \right) \quad \cdots (n)
\]

Adding equations (1), (2), \(\cdots, (n) \) we get \[
\text{Val}(f) = \sum_{i=1}^{n} \left(\sum_{e \in \text{In}(y_i)} f(e) - \sum_{e \in \text{Out}(y_i)} f(e) \right)
\]

Let \(A(U, f) = \sum_{e \in \text{out}(U)} f(e) - \sum_{e \in \text{In}(U)} f(e) \)

and \(B(U, f) = \sum_{i=1}^{n} \left(\sum_{e \in \text{In}(y_i)} f(e) - \sum_{e \in \text{Out}(y_i)} f(e) \right) \).

We want to show \(\text{Val}(f) = A(U, f) \). We will show that \(A(U, f) = B(U, f) \). Since \(\text{Val}(f) = B(U, f) \), it will follow that \(\text{Val}(f) = A(U, f) \). To show that \(A(U, f) = B(U, f) \), we will show that \(A(U, f) \) & \(B(U, f) \) agree about the net contribution of \(f(e) \) & \(-f(e) \) for each edge \(e \in E(G) \).
Let $e = \overline{uv}$ be any edge in $E(G)$ from u to v. Then there are four cases.

Case(i) $u \in U$ & $v \in U$: In this case neither $f(e)$ nor $-f(e)$ appear in either of the expressions $A(U,f)$ or $B(U,f)$. So $A(U,f)$ & $B(U,f)$ agree about the net contribution of $f(e)$ & $-f(e)$.

Case(ii) $u \in U$ & $v \in \overline{U}$: In this case only $f(e)$ occurs in $A(U,f)$ and only $f(e)$ occurs in $B(U,f)$ also. So $A(U,f)$ & $B(U,f)$ agree about the net contribution of $f(e)$ & $-f(e)$ again.

Case(iii) $u \in \overline{U}$ & $v \in U$: In this case only $-f(e)$ occurs in $A(U,f)$ and only $-f(e)$ occurs in $B(U,f)$ also. So $A(U,f)$ & $B(U,f)$ agree about the net contribution of $f(e)$ & $-f(e)$ once more.

Case(iv) $u \in \overline{U}$ & $v \in \overline{U}$: In this case neither $f(e)$ nor $-f(e)$ occurs in $A(U,f)$. Also both $f(e)$ & $-f(e)$ occurs in $B(U,f)$. So $A(U,f)$ & $B(U,f)$ agree about the net contribution of $f(e)$ & $-f(e)$ once again.

Thus $A(U,f) = B(U,f)$ and so we get $Val(f) = A(U,f)$.

Prop. 2 Let U be a source-separating set of vertices in a network N, and f be any legal flow in N. Then $Val(f) \leq c[Cut(U)]$.

Proof: From Proposition 1, we have

$$Val(f) = \sum_{e \in \text{Out}(U)} f(e) - \sum_{e \in \text{In}} f(e) \leq \sum_{e \in \text{Out}(U)} f(e) \quad \text{because} \quad f(e) \geq 0 \leq \sum_{e \in \text{Out}(U)} c(e) = c[Cut(U)] \quad \text{because} \quad f(u) \leq c(e).$$
§2. The Ford-Fulkerson Algorithm & MaxFlow-MinCut Theorem

Def. Let N be a network. We define

$$\text{MaxFlow}(N) = \max \{ \text{Val}(f) : f \text{ is a legal flow in } N \}.$$

Recall also that

$$\text{MinCut}(N) = \min \{ c[\text{Cut}(U)] : U \text{ is a source-separating set of vertices in } N \}.$$

Observe that since $\text{Val}(f) \leq c[\text{Cut}(U)]$ for any legal flow f & source-separating set of vertices in N, we immediately get $\text{MaxFlow}(N) \leq \text{MinCut}(U)$.

We will find a flow f^* in N along with a source-separating set of vertices U^* such that $\text{Val}(f^*) = c[\text{Cut}(U^*)]$. From this it will follow that $\text{MaxFlow}(N) = \text{MinCut}(N)$.

Def. Let f be a legal flow in a network N. The slack w.r.t. f of an edge e in a semi-path P from s to t is defined by $s_l(e) = \text{maximum flow you can add to } e \text{ in the direction from } s \text{ to } t$.

An augmenting semi-path P is any semi-path from s to t with $s_l(e_i) > 0$ for each e_i in P.

Ex. 1

Below are two augmenting semi-paths with the slack of each edge.

1. $s \rightarrow d \rightarrow t$
 $$s_l(\overline{sd}) = 12, \ s_l(d\overline{t}) = 0$$

2. $s \rightarrow d \rightarrow b \rightarrow t$
 $$s_l(\overline{sd}) = 12, \ s_l(b\overline{t}) = 3, \ s_l(\overline{bd}) = 5$$
Ex. 1. If we use the first augmenting semi-path, we can modify the flow and increase its value by sending 6 units along the semi-path $s \rightarrow d \rightarrow t$.

We could have used the second augmenting semi-path to modify the flow and increase its value by sending 3 units along the semi-path $s \rightarrow d \rightarrow b \rightarrow t$ from s to t.

Algorithm 1 (Ford-Fulkerson Algorithm)

INPUT: A network $N = (G, s, t, c)$

OUTPUT: A maximal flow $f^*: E(G) \rightarrow R^*$

1. For each edge $e \in E(G)$, let $f^*(e) \leftarrow 0$ & $i \leftarrow 1$
2. If there is no augmenting semi-path from s to t, STOP; else, find an augmenting semi-path P from s to t.
3. Compute the slack (with respect to f^*) of each edge e in the semi-path P and let $\mu_i = \min \{ \text{sl}(e) : e \in P \}$
4. Let $f^*(e) \leftarrow f^*(e) + \mu_i$ for each forward edge e of P, & $f^*(e) \leftarrow f^*(e) - \mu_i$ for each backward edge e of P; $i \leftarrow i + 1$ & then go to step 2. (A forward edge e in a semi-path P from s to t is an edge which goes in the direction from s to t. A backward edge e in P is an edge which goes in the direction from t to s.)
Ex. 2 Let \(N \) be the network

Find a maximal flow \(f^* \) in \(N \) and a source-separating set of vertices \(U^* \) such that \(\text{Val}(f^*) = c[\text{Cut}(U^*)] \).

1st augmenting semi-path, \(P_1 \):
\[
\begin{align*}
S & \overset{(0,6)}{\rightarrow} a \overset{(0,5)}{\rightarrow} b \overset{(0,9)}{\rightarrow} d \overset{(0,5)}{\rightarrow} t
\end{align*}
\]
Slacks: \(6 \quad 5 \quad 9 \quad 5 \quad \therefore M_1 = 5 \)

2nd augmenting semi-path, \(P_2 \):
\[
\begin{align*}
S & \overset{(0,10)}{\rightarrow} d \overset{(5,9)}{\rightarrow} b \overset{(0,7)}{\rightarrow} t
\end{align*}
\]
Slacks: \(10 \quad 5 \quad 7 \quad \therefore M_2 = 5 \)

There are no more augmenting paths. Also
\[
\text{Val}(f^*) = \sum_{e \in \text{In}(t)} f^*(e) - \sum_{e \in \text{Out}(t)} f^*(e) = (5+5) - (0) = 10.
\]

Let \(U^* = \{ v \in V(G) : \text{there is an aug. semi-path from } s \text{ to } v \} \).
Then \(s \in U^* \) & \(t \notin U^* \) (because there is no more augmenting semi-paths from \(s \) to \(u \)). So \(U^* \) is a source-separating set of vertices in \(N \). Also \(U^* = \{ S, a, d \} \) and \(c[\text{Cut}(U^*)] = \sum_{e \in \text{Out}(u)} c(e) = c(ab) + c(dt) = 5 + 5 = 10 \).
Thus
\[
\text{Val}(f^*) = c[\text{Cut}(U^*)].
\]
Theorem 3: (MaxFlow - MinCut Theorem)
In any network, \(\text{MaxFlow}(N) = \text{MinCut}(N) \).

Proof: Let \(f^* \) be the flow obtained by the Ford-Fulkerson Algorithm. Then there is no augmenting semi-path from \(s \) to \(t \). So if we put \(U^* = \{ v \in V(G) : \text{there is an any semi-path from } s \text{ to } v \} \), then \(s \in U^* \) & \(t \notin U^* \). So \(U^* \) is a source-separating set of vertices in \(N \).

First, we know that
\[
\text{Val}(f^*) = \sum_{e \in \text{Out}(U^*)} f^*(e) - \sum_{e \in \text{In}(U^*)} f^*(e),
\]

Now consider an edge \(e = vw \) from \(\text{Out}(U^*) \). If \(f^*(e) \) was less than \(c(e) \), then we would be able to send some more flow from \(s \) to \(w \). But this is impossible, because \(v \in U^* \) & \(w \notin U^* \). So we must have \(f^*(e) = c(e) \) for each edge \(e \in \text{Out}(U^*) \).

Also consider an edge \(e = vw \) from \(\text{In}(U^*) \). If \(f^*(e) \) was non-zero, then we would be able to send some more flow from \(s \) to \(w \) by push back some along the backward edge \(vw \). But this is impossible, because \(w \notin U^* \). Hence \(f^*(e) = 0 \) for each edge \(e \in \text{In}(U^*) \). Thus
\[
\text{Val}(f^*) = \sum_{e \in \text{Out}(U^*)} f^*(e) - \sum_{e \in \text{In}(U^*)} f^*(e) = \sum_{e \in \text{Out}(U^*)} c(e) - \sum_{e \in \text{In}(U^*)} 0 = c[\text{Cut}(U^*)] - c[\text{Cut}(U^*)]
\]
Since \(\text{MaxFlow}(N) \leq \text{MinCut}(N) \) & we have \(\text{Val}(f^*) = c[\text{Cut}(U^*)] \), it follows that \(\text{MaxFlow}(N) = \text{MinCut}(N) \).
Ex. 3 Let N be the network

Find a maximal flow f^* in N, the associated source-separating set of vertices U^* & check that $\text{Val}(f^*) = c[\text{Cut}(U^*)]$

1st augmenting semi-path, P_1:
\[
\begin{align*}
S &\rightarrow (0,10) \rightarrow a \rightarrow (0,6) \rightarrow b \rightarrow (0,8) \rightarrow t \\
\text{Slacks:} &\quad 10 \quad 6 \quad 8 \quad i: M_1 = 6
\end{align*}
\]

2nd augmenting semi-path, P_2:
\[
\begin{align*}
S &\rightarrow (0,10) \rightarrow a \rightarrow (0,4) \rightarrow t \\
\text{Slacks:} &\quad 4 \quad 4 \quad i: M_2 = 4
\end{align*}
\]

3rd augmenting semi-path P_3:
\[
\begin{align*}
S &\rightarrow (0,9) \rightarrow c \rightarrow (0,3) \rightarrow d \rightarrow (0,5) \rightarrow t \\
\text{Slacks:} &\quad 9 \quad 7 \quad 5 \quad M_3 = 5
\end{align*}
\]

There are no more augmenting semi-paths now. So $U^* = \{v \in V(G): \text{we can send some more flow from } S \text{ to } v\}$ = \{S, c, d, a\}

Thus $\text{Val}(f^*) = \sum_{e \in \text{In}(t)} f^*(e) - \sum_{e \in \text{Out}(t)} f^*(e) = f^*(at) + f^*(at) + f^*(dt) - 0$

\[
\begin{align*}
\text{Val}(f^*) &= 6 + 4 + 5 = 15 \\
c[\text{Cut}(U^*)] &= \sum_{e \in \text{Out}(U^*)} c(e) = c(ab) + c(dt) + c(dt) = 6+4+5 = 15
\end{align*}
\]