1. (16 pts.) Fill in the blanks of the following analysis with the correct terminology.

Let \(f(x) = x^4 - 8x^3 \). Then \(f'(x) = 4x^3 - 24x^2 = 4(x - 0)^2(x - 6) \).
Since \(f'(x) < 0 \) when \(0 < x < 6 \) or \(x < 0 \), and \(f \) is continuous, \(f \) is _________________ on the interval \((-\infty, 6)\). Also, because \(f'(x) > 0 \) for \(6 < x \), \(f \) is _________________ on the set \((6, \infty)\). Obviously, \(x = 0 \) and \(x = 6 \) are _________________ points of \(f \) since \(f'(0) = 0 \) and \(f'(6) = 0 \). By using the first derivative test, it follows easily that \(f \) has _________________ at \(x = 0 \), and _________________ at \(x = 6 \).

Since \(f''(x) = 12x^2 - 48x = 12x(x - 4) \), we have \(f''(0) = 0 \), \(f''(4) = 0 \), \(f''(x) < 0 \) when \(0 < x < 4 \), and \(f''(x) > 0 \) when \(x > 4 \) or \(x < 0 \). Thus, \(f \) is _________________ on the set \((-\infty, 0) \cup (4, \infty)\), \(f \) is _________________ on the interval \((0, 4)\), and \(f \) has _________________ at \(x = 0 \) and \(x = 4 \).

2. (4 pts.) Rolle’s Theorem states that if \(f(x) \) is continuous on \([a, b]\) with \(f(a) = f(b) = 0 \) and differentiable on \((a, b)\), then there is a number \(c \) in \((a, b)\) such that \(f'(c) = 0 \). Give an example of a function \(f(x) \) defined on \([-1, 1]\) with \(f \) continuous on \([-1, 1]\) and \(f(-1) = f(1) = 0 \) but such that there is no number \(c \) in \((-1, 1)\) with \(f'(c) = 0 \). [Hint: Which hypothesis above must you violate??]
3. (10 pts.) Find all the critical points of the function \(f(x) = 3 \cdot (x^2 - 2x)^{1/3} \). Which critical points are stationary points? Apply the second derivative test at each stationary point and draw an appropriate conclusion.

4. (10 pts.) Locate and determine the maximum and minimum values of the function \(f(x) = 3x^2 - x^3 \) on the interval \([-1, 1]\). What magic theorem allows you to conclude that \(f(x) \) has a maximum and minimum even before you attempt to locate them? Why??
5. (10 pts.) (a) State the Mean Value Theorem of Differential Calculus. Use a complete sentence and appropriate notation.

(b) Show how to use the Mean Value Theorem to prove the following: If $0 < x < y$ are real numbers, then

$$
\frac{y - x}{2y^{1/2}} < y^{1/2} - x^{1/2}
$$

is true. [Hint: Study $f(t) = t^{1/2}$ on the interval $[x, y]$ using the M.V.T. and utilize the observation that $g(t) = 1/(2t^{1/2})$ is a decreasing function on $(0, \infty)$.]

6. (10 pts.) A very small rectangular area of 25 square feet is to be fenced. One of the sides will use fencing costing $2.00 per running foot, and the remaining 3 sides will use a hedge costing $1.00 per running foot. Find the dimensions of the rectangle which has the least cost to enclose. Provide a complete enough analysis to convince the doubtful that your extreme value is an absolute minimum.
7. (5 pts.) Find the function \(f(x) \) that satisfies the following two equations: \(f'(x) = 2 \cdot \sec(x) \cdot \tan(x) + \frac{3}{\pi} \) for every real number \(x \) in \((-\pi/2, \pi/2)\), and \(f(\pi/3) = 4 \).

8. (5 pts.) Find a function \(h(x) \) so that \(h \) satisfies the following equation:

\[
\int h(x) \, dx = 2e^x + \sec^2(x) - 12x + C
\]

\(h(x) = \)

9. (10 pts.) Evaluate the following antiderivatives.

\[
\int \left(7x^6 - \frac{\pi}{x} - \frac{12}{x^3} - \frac{11}{(1 - x^2)^{1/2}} \right) \, dx =
\]

\[
\int \left(e^{5x} - 22 - \frac{\sin(2x)}{\cos(2x) + 1} \right) \, dx =
\]
10. (20 pts.) Very carefully sketch each of the following functions. Label very carefully.

(a) $f(x)$ is continuous on \mathbb{R} and satisfies the following:
 1. $f(1) = 0$;
 2. $x < 1 \Rightarrow f'(x) > 0$, and $x > 1 \Rightarrow f'(x) < 0$;
 3. $\lim_{x \to 1^-} f'(x) = +\infty$ and $\lim_{x \to 1^+} f'(x) = -\infty$;
 4. $x \neq 1 \Rightarrow f''(x) > 0$; and
 5. $f(x) \to -1$ as $x \to \pm\infty$.

(b) $g(x) = 3x^2 - 2x^3$ [Analyze g' and g'' and how g behaves as $x \to \pm\infty$. Work on the back of page 4!]