1. (4 pts.) (a) Find a parametric equation for the line through
\[\mathbf{a} = \begin{bmatrix} -3 \\ 5 \end{bmatrix} \] and parallel to \(\mathbf{b} = \begin{bmatrix} 23 \\ -5 \end{bmatrix} \).

(b) Find a parametric equation for the line through \(\mathbf{a} \) and \(\mathbf{b} \), where
\[\mathbf{a} = \begin{bmatrix} -3 \\ 5 \end{bmatrix} \] and \(\mathbf{b} = \begin{bmatrix} 23 \\ -5 \end{bmatrix} \).

2. (6 pts.) Using complete sentences and appropriate notation, define each of the items below.

(a) Linear Combination

(b) Span\(\{\mathbf{v}_1, \ldots, \mathbf{v}_m\} \)

(c) Linear Independent
3. (2 pts.) Write the general solution of the equation
\[x_1 - 6x_2 + 8x_3 = 25 \]
in parametric form.

4. (2 pts.) The general solution of a certain matrix equation
\[Ax = b \] with \(b \neq 0 \) is given in parametric vector form as follows:
\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix} = \begin{bmatrix}
 -3 \\
 12 \\
 -5
\end{bmatrix} + x_2 \begin{bmatrix}
 -5 \\
 1 \\
 0
\end{bmatrix} + x_3 \begin{bmatrix}
 15 \\
 0 \\
 1
\end{bmatrix}, \text{where } x_2 \text{ and } x_3 \text{ are arbitrary real numbers.}
\]
Give the solution to the corresponding homogeneous equation, \(Ax = 0 \).

5. (4 pts.) Suppose \(A \) is a 5 \(\times \) 3 matrix with 2 pivot elements.
(a) Are the columns of \(A \) linearly independent? Explain.

(b) Does the matrix equation \(Ax = b \) have a solution for every \(b \) in \(\mathbb{R}^5 \)? Explain.

6. (2 pts.) After asserting whether the following proposition is always true or false in at least one case, give a brief justification for or provide a counterexample to it:

If \(\{v_1, v_2, v_3, v_4\} \) is a linear independent set of vectors in \(\mathbb{R}^5 \), then \(\{v_2, v_3\} \) is also linearly independent.