\[f(x) = -x^3 + 9x^2 - 24x + 18 \]
\[f'(x) = -3x^2 + 18x - 24 = -3(x^2 - 6x + 8) = -3(x - 2)(x - 4) \]
So we have critical points at \(x = 2, 4 \)

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>f'</td>
<td>-3</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

\(f \) is decreasing on \((-\infty, 2) \) \text{ and } \((4, +\infty) \)
\(f \) is increasing on \((2, 4) \)
\(f \) has a relative maximum of \(2 \) at \(x = 4 \)
\(f \) has a relative minimum of \(-2 \) at \(x = 2 \)
\[f''(x) = -6x + 18 = -6(x - 3) \]
\[f'' | x = 3 \rightarrow + \]
\(f \) is concave up on \((-\infty, 3) \)
\(f \) is concave down on \((3, +\infty) \)
\(f \) has an inflection point at \((3, 0) \)