
Section 4.3

(3) Let \(L = \{ w \in \{a,b\}^* : n_a(w) = n_b(w) \} \). Then \(L \) is not regular. (Since \(L^* = L, L^* \) is also not regular either.)

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^mb^m \). Notice that \(w \in L \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^k \) for some \(k \leq k \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2z = a^{m+k}b^m \). So \(w_i \notin L \) because \(m + k \neq m \). This contradicts the Pumping Lemma. So \(L \) is not regular. \(\square \)

(4a) Let \(L = \{ a^n b^k : k \geq n + l \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^mb^m a^m \). Notice that \(w \in L \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^t \) for some \(t \) with \(1 \leq t \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2z = a^{m+t}b^m \). So \(w_i \notin L \) because \(2m \neq (m+t) + m \). This contradicts the Pumping Lemma. So \(L \) is not regular. \(\square \)

(4b) Let \(L = \{ a^n b^k : k \neq n + l \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Then \(\bar{L} \cap L(a^* b^* a^*) \) is also regular since the family of regular languages is closed under compliment and intersection. Let us write \(L_1 \) for \(\bar{L} \cap L(a^* b^* a^*) \). Notice that \(L_1 = \{ a^n b^k : k = n + l \} \). We will apply the Pumping Lemma to \(L_1 \). Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^m b^m a^m \). Notice that \(w \in L_1 \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^t \) for some \(t \) with \(1 \leq t \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2z = a^{m+t}b^m \). So \(w_i \notin L_1 \) because \(2m \neq (m+t) + m \). This contradicts the Pumping Lemma. So \(L \) is not regular. \(\square \)

(4c) Let \(L = \{ a^n b^k : n = l \text{ or } l \neq k \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^m b^m a^m \). Notice that \(w \in L \) (since \(n=m=l \)) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^t \) for some \(t \) with \(1 \leq t \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2z = a^{m+t}b^m a^m \). So \(w_i \notin L \) because \(n = m+t \neq m = l \text{ and } l = m = k \). This contradicts the Pumping Lemma. So \(L \) is not regular. \(\square \)

(4d) Let \(L = \{ a^n b^l : n \leq l \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^m b^m \). Notice that \(w \in L \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^t \) for some \(t \) with \(1 \leq t \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2z = a^{m+t}b^m \). So \(w_i \notin L \) because \(m + t \neq m \). This contradicts the Pumping Lemma. So \(L \) is not regular. \(\square \)
(4e) Let \(L = \{ w \in \{a,b\}^* : n_a(w) = n_b(w) \} \). Then \(L \) is not regular.

Proof. If \(L \) were regular then \(\overline{L} \) would be regular. But we proved in exercise (3) above that \(\overline{L} \) is not regular. \(\square \)

(4f) Let \(L = \{ ww : w \in \{a,b\}^* \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^m ba^m b \). Notice that \(w \in L \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^k \) for some \(k \) with \(1 \leq k \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2 z = a^{m+k} ba^m b \). So \(w_i \notin L \). This contradicts the Pumping Lemma. So \(L \) is not regular. \(\square \)

(5a) We did this one in class.

(5b) This follows from 5a since the family of regular languages is closed under compliments.

(5c) Let \(L = \{ a^n : n = k^2 \text{ for some } k \geq 0 \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^{m^2} \). Notice that \(w \in L \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^t \) for some \(t \) with \(1 \leq t \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2 z = a^{m^2+t} \). Now \(m^2 + t \leq m^2 + m < m^2 + 2m + 1 = (m+1)^2 \). So \(m^2 + t \neq k^2 \) for any \(k \). So \(w_i \notin L \). This contradicts the Pumping Lemma. So \(L \) is not regular. \(\square \)

(5d) Let \(L = \{ a^n : n = 2^k \text{ for some } k \geq 0 \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^{2^m} \). Notice that \(w \in L \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^t \) for some \(t \) with \(1 \leq t \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2 z = a^{2^m+t} \). Now \(2^m + t \leq 2^m + m < 2^m + 2m = 2(2^m) = 2^{m+1} \). So \(2^m + t \neq 2^k \) for any \(k \). (In the above calculation we use the fact that, since \(m \geq 1, m < 2^m \). This can be proved by induction on \(m \).) So \(w_i \notin L \). This contradicts the Pumping Lemma. So \(L \) is not regular. \(\square \)

(8) Consider the statement: “If \(L_1 \) and \(L_2 \) are nonregular languages, then \(L_1 \cup L_2 \) is nonregular.” This statement is FALSE. For example let \(L_1 \) be the \(L \) from exercise (5d) above. So \(L_1 \) is nonregular. Let \(L_2 = \{a\}^* - L_1 \). Since the family of regular languages is closed under compliment, \(L_2 \) is also nonregular. But \(L_1 \cup L_2 = \{a\}^* \) which, of course, is regular.

(9a) Let \(L = \{ a^nb^ka^k : n + l + k > 5 \} \). Then \(L \) is regular. Here is a regular expression for \(L \):

\[
\begin{align*}
\text{aaaaaa}^*b^*a^* + \text{aaaaabb}^*a^* + \text{aaaaabaa}^* + \text{aabbba}^*a^* + \text{aabbaa}^* + \\
+ \text{aabbbb}^*a^* + \text{aabbaaa}^* + \text{aabbaaa}^* + \text{abbbbb}^*a^* + \text{abbbbaa}^* + \text{abbbaaa}^* + \text{abbbaaa}^* + \text{abbaaaa}^* + \\
+ \text{bbbbbba}^*a^* + \text{bbbbbba}^* + \text{bbbaaa}^* + \text{bbbaaa}^* + \text{baaaaa}^*
\end{align*}
\]
(9b) Let \(L = \{ a^nb^l : n > 5, l > 3, k \leq l \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^nb^{lm}a^{4m} \). Notice that \(w \in L \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that there are three cases for what \(y \) looks like. Either (i) \(y = a^t \) for some \(t \) with \(1 \leq t \leq 6 \); or (ii) \(y = b^t \) for some \(t \) with \(1 \leq t \leq m \); or (iii) \(y = a^tb^s \) for some \(t \) and \(s \) with \(1 \leq t \leq 6 \) and \(1 \leq s \leq m \). In Case (i), let \(i = 0 \). Then \(w_i = w_0 = xz = a^{6-t}b^{4m}a^{4m} \). Then \(w_i \notin L \) since \(6 - t \) is not greater than 5. In Case (ii) let \(i = 0 \). Then \(w_i = w_0 = xz = a^{6}b^{4m-t}a^{4m} \). Then \(w_i \notin L \) since it is not the case that \(4m \leq 4m - t \). In Case (iii) let \(i = 2 \). Then \(w_i = w_2 = xy^2z = a^tb^s a^tb^s z \). So again \(w_i \notin L \). This contradicts the Pumping Lemma. So \(L \) is not regular.

(9c) Let \(L = \{ a^nb^l : n/l \text{ is an integer} \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^{m+1}b^{n+1} \). Notice that \(w \in L \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^k \) for some \(k \) with \(1 \leq k \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2z = a^{m+k}b^{n+1} \). Now \(m + k + 1 \leq m + m + 1 < 2m + 2 = 2(m + 1) \). So \(m + k + 1 \) is not a multiple of \(m + 1 \). So \((m + k + 1)/(m + 1) \) is not an integer. So \(w_i \notin L \). This contradicts the Pumping Lemma. So \(L \) is not regular.

(9d) Let \(L = \{ a^nb^l : n + l \text{ is a prime number} \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Let \(p \) be the least prime number greater than \(m \). Then let \(w = a^pb^0 = a^p \). Notice that \(w \in L \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^k \) for some \(k \) with \(1 \leq k \leq m \). Now let \(i = p + 1 \). Then \(w_i = a^{p+k} \). Now \(p + pk = p(k + 1) \) is not a prime number. So \(w_i \notin L \). This contradicts the Pumping Lemma. So \(L \) is not regular.

(9e) Let \(L = \{ a^nb^l : n \leq l \leq 2n \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = a^nb^m \). Notice that \(w \in L \) (since \(m \leq m \leq 2m \)) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Notice that \(y = a^k \) for some \(k \) with \(1 \leq k \leq m \). Now let \(i = 2 \). Then \(w_i = w_2 = xy^2z = a^{m+k}b^m \). Then \(w_i \notin L \) since it is not the case that \(m + k \leq m \). This contradicts the Pumping Lemma. So \(L \) is not regular.

(9f) Let \(L = \{ a^nb^l : n \geq 100, l \leq 100 \} \). Then \(L \) is regular. Here is a regular expression for \(L \):

\[
a^{100}a^*(\lambda + b + bb + bbbb + bbbbb + \cdots + b^{98} + b^{99} + b^{100})
\]

(11) Let \(L_1 \) and \(L_2 \) be regular languages. Let \(L = \{ w : w \in L_1, w^R \in L_2 \} \). Then \(L \) is regular. To see this, just notice that \(L = L_1 \cap L_2^R \). Since the family of regular languages is closed under reversal and intersection, \(L \) is regular.
(13a) Let \(L = \{ uww^Rv : u, v, w \in \{a, b\}^+ \} \). Then \(L \) is regular. Let \(r \) be the following regular expression.
\[
(a + b)(a + b)^*(aa + bb)(a + b)^*.
\]

Claim. \(L = L(r) \).

Proof. First we will show that \(L \subseteq L(r) \). Let \(x \in L \). So then \(x = uww^Rv \) for some \(u, v, w \in \{a, b\}^+ \). Suppose the last symbol of \(w \) is \(a \). (If the last symbol of \(w \) is \(b \) the proof is similar.) Let us write \(w = ya \) with \(y \in \{a, b\}^+ \). Then we can write \(x = uyaay^Rv \). Now \(uy \in L((a + b)(a + b)^*) \) and \(y^Rv \in L((a + b)(a + b)^*) \) so \(x \in L(r) \).

Next we will show that \(L(r) \subseteq L \). Let \(x \in L(r) \). So then \(x = uaav \) or \(x = ubbv \) with \(u, v \in \{a, b\}^+ \). In either case we can write \(x = uww^Rv \) with \(u, v, w \in \{a, b\}^+ \). So \(x \in L \). \(\square \)

(13b) Let \(L = \{ uss^Rv : u, v, s \in \{a, b\}^+, |u| \geq |v| \} \). Then \(L \) is not regular.

Proof. Assume towards a contradiction that \(L \) is regular. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = (ab)^maa(ba)^m \). Notice that \(w \in L \) (with \(u = (ab)^m, s = a, v = (ba)^m \)) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Since \(|xy| \leq m \), we know that \(y \) is a substring of \((ab)^m\). Now let \(i = 0 \). Then \(w_0 = xz = raab(ba)^m \) for some \(r \) with \(|r| < |(ab)^m| = 2m \). I claim that \(w_0 \notin L \).

To see this, suppose towards a contradiction that \(w_0 \in L \). Then we can write \(w_0 = uss^Rv \) with \(u, v, s \in \{a, b\}^+ \) and \(|u| \geq |v| \). But also we know that \(w_0 = raab(ba)^m \). Since \(|r| < 2m \) but \(|u| \geq |v| \) we must have that \(ra \) is a prefix of \(u \). So \(ss^Rv \) is a substring of \((ba)^m \). Now suppose the last symbol of \(s \) is \(a \). (If the last symbol of \(s \) is \(b \) the proof is similar.) Notice then that \(aa \) is a substring of \(ss^R \). But this is impossible because \(aa \) is not a substring of \(a(ba)^m \). This contradiction proves that \(w_0 \notin L \).

But this contradicts the Pumping Lemma. So \(L \) is not regular. \(\square \)

(14) Let \(L = \{ uu^Rv : u, v \in \{a, b\}^+ \} \). Then \(L \) is not regular.

Proof. This is a very difficult problem. It turns out that it is not possible to apply the Pumping Lemma directly to \(L \) in order to derive a contradiction. So I will use another strategy. Assume towards a contradiction that \(L \) is regular. Let \(r \) be the following regular expression: \((ab)^*(ab)(ba)^*b \). Let \(L_1 = L \cap L(r) \). If \(L \) is regular then so is \(L_1 \). We will apply the Pumping Lemma to \(L_1 \) to derive a contradiction. Notice that \(L_1 = \{ (ab)^*(ba)^t : t \geq s \geq 1 \} \). So assume that this \(L_1 \) is regular and we will derive a contradiction. Let \(m > 0 \) be given by the Pumping Lemma. Then let \(w = (ab)^m(ba)^mb \). Notice that \(w \in L_1 \) and \(|w| \geq m \). So let \(w = xyz \) be the decomposition of \(w \) given by the Pumping Lemma. Let us consider 4 possibilities for what \(y \) looks like:

Case 1. \(y \) starts with an \(a \) and ends with a \(b \).

So then \(y = (ab)^k \) for some \(k \) with \(1 \leq k \leq m/2 \). In this case, let \(i = 2 \). Then \(w_1 = w_2 = xy^2z = (ab)^{m-k}(ba)^mb \). So \(w_1 \notin L \). But this contradicts the Pumping Lemma. So \(L_1 \) is not regular.

Case 2. \(y \) starts and ends with an \(a \).

In this case, let \(i = 2 \). Then \(w_1 = w_2 = xyyz \). Since \(y \) starts and ends with an \(a \), \(aa \) is a substring of \(yy \). But it is easy to see that \(aa \) is not a substring of any string in \(L_1 \). So \(w_2 \notin L_1 \). But this contradicts the Pumping Lemma. So \(L_1 \) is not regular.
Case 3. \(y \) starts and ends with an \(b \).
So then \(y = b(ab)^k \) for some \(k \) with \(0 \leq k < m/2 \). Also \(x = (ab)^s a \) and \(z = (ab)^t (ba)^m b \) for some numbers \(s \) and \(t \) such that \(s + k + t + 1 = m \). In this case let \(i = 2 \). Then \(w_i = w_2 = xyyz = (ab)^s ab(ab)^k b(ab)^k (ab)^t (ba)^m b = (ab)^{s+k+t+1} b(ab)^{k+i} (ba)^m b \). Clearly \(w_2 \notin L(r) \) so \(w_2 \notin L_1 \). But this contradicts the Pumping Lemma. So \(L_1 \) is not regular.

Case 4. \(y \) starts with a \(b \) and ends with an \(a \).
So then \(y = b(ab)^k a \) for some \(k \) with \(0 \leq k < m/2 \). Also \(x = (ab)^s a \) and \(z = b(ab)^t (ba)^m b \) for some numbers \(s \) and \(t \) such that \(s + k + t + 2 = m \). In this case let \(i = 2 \). Then \(w_i = w_2 = xyyz = (ab)^s ab(ab)^k ab(ab)^k ab(ab)^t (ba)^m b = (ab)^{s+k+t+3} (ba)^m b = (ab)^{m+1} (ba)^m b \). So \(w_2 \notin L_1 \). But this contradicts the Pumping Lemma. So \(L_1 \) is not regular.