MAC 2313

  • 1. (11.1), p. 771, #12-15, 24-28, 48, 49 (Rectangular coordinates in 3-space, spheres, cylindrical surfaces )
  • 2. (11.2), p. 782, #7, 8, 11, 15, 22, 24, 26, 32-35, 47, 48.(Vectors)

  • 3. (11.3), p. 792, #12, 13, 24, 25, 37, 38. (Dot product, projections) 
  • 4. (11.4), p. 803, #4, 5, 6, 25, 26, 29.(Cross product)

  • Quiz 1: Thursday, September 12. Sections: 11.1-11.6. 4 problems, 40 minutes maximum time.
  • Problem session: Tuesday, September 10.
  • 5. (11.5), p. 810, # 3, 4, 17-20, 31, 32, 43, 44, 49, 50, 55. (Parametric equations of lines)
  • 6. (11.6), p. 819, #4, 5, 14, 15, 30-35, 45, 48, 49. (Planes in 3-space) 
  •  
  • 7. (11.7), p. 829, #15-20, 29-32. (see table 11.7.2!) (Quadric Surfaces)
  • 8. (11.8), p. 837, #6, 7, 10, 11, 37-44. (Cylindrical and spherical coordinates)
  • 9. (12.1), p. 845, #11-14, 18, 25-28.(Introduction to vector valued functions)
  • 10.(12.2), p. 856, #20-22, 26-28, 33,34,46-48. (Calculus of vector-valued functions.) 


  • Last day to drop a course with a DR grade: November 4..
  • 11.(12.3), p. 866, #6-8, 10-12, 26-30.(Change of parameter; arc length)
  • 12.(12.4), p. 872, #5-10. (Unit tangent, normal and binormal vectors)
  • 13.(12.5), p. 879, #9-12, 14,15,31,32,46-48, 63. (Curvature) 
  • 14.(12.6), p. 891, 5-8, 18-22,26, 27, 32-35, 43, 44. (Motion along a curve)
  • 15.(12.7), p. , (Kepler's laws of planetary motion)

  • Exam I: Thursday, October 3. Sections:11.1-11.8, 12.1-12.5. 6 Problems, 100 minutes maximum time.
  • Problem session: Tuesday, October 1.
  • 16.(13.1), p. 913, #23,24, 31-35, 46-52, 58-60.(Functions of two or more variables) 
  • 17.(13.2), p. 925, #3-6, 8,10,11,17-20, 46-51.(Limits and continuity) 
  • 18.(13.3), p. 936, #19-22, 31-34, 48-50, 66-68, 105-106.(Partial derivatives )
  • 19.(13.4), p. 947, #12-17, 22-25, 35-41, 50-52, 56, 58, 60.(Differentiability, differentials and local linearity)  
  • Quiz 2: Thursday, October 24. Sections:13.1-13.6.
  • Problem session: Tuesday October 22.
  • 20.(13.5), p. 956, #5-9, 20-24, 50,51. (The chain rule) 
  • 21.(13.6), p. 967, #4-8, 12-15, 20-22, 27, 30-40, 49-52, 56-59, 75.(Directional derivatives and gradients )
  • 22.(13.7), p. 975, #5-10, 26,29.(Tangent planes and normal lines)
  • 23.(13.8), p. 985, #11-17, 37-43.(Maxima and minima of functions of two variables) 
  • 24.(13.9), p. 995, #8-11, 20-23 (Lagrange multipliers)


  • 25.(14.1), p.1007, #5-10, 14-16, 30-33.(Double Integrals)
  • 26.(14.2), p. 1015, #3-6, 16,17 22-26, 30,31, 40-43, 51-54.(Double Integrals over Nonrectangular Regions) 

  • For November 5, 2013, write down solutions for assigned problems 14.1 #30-33 and 14.2 #40-43, 51-54. Submit them to the math secretary by 4:30PM on November 5. No photocopies, include statement of problems and detailed solutions.
  • 27.(14.3, p.1024, #3-5, 8,9, 28-32.(Double Integrals in Polar Coordinates)
  • 28.(14.4), p. 1035 , #2,3, 7-10, 40-43.(Parametric Surfaces; Surface Area) 
  • 29.(14.5), p. 1045, #3-7, 9-11. (Triple Integrals)
  • 30.(14.6), p. 1056, #2,3, 10-12, 15-18.(Triple Integrals in Cylindrical and Spherical Coordinates)
  • 32.(14.7), p. 1068, #22-26, 36-39, 45-47.(Change of Variables in Multiple Integrals; Jacobians) 
  • 33. (14.8) (Reading) (Center of gravity using multiple integrals)
  • Exam II: Thursday, November 14. Sections:12.6, 13.1-13.9, 14.1-14.7.


  • 34.(15.1), p. 1092. #15-20.(Vector fields) 
  • 34. (15.2), p. 1108, #8,9, 17-21, 30, 31, 42, 43. (Line Integrals).
  • 35. (15.3), p. 1120, #4-6, 11-13. (Independance of Path; Conservative vector fields).
  • 36. (15.4), p. 1127, #2-4, 9-11. (Green's Theorem).
  • 37. (15.5), p. 1135, #4-7, 23, 24. (Surface Integrals).
  • 38. (15.6), p. 1146' #9-14. (Applications of Surface Integral, Flux)
  • 39. (15.7), p. 1157, #10-14. (The Divergence Theorem).
  • 40. (15.8), p. 1164, #7-10. (Stoke's Theorem).

  • Final examination: Time limit: 120 minutes, 10 problems for a maximum of 150 points)
  • Thursday, December 12, 2013. 0945-1145. GL 523.