Stata Survey Statistics
[stata_survey_stats_commands]

See UCLA/ATS, Stat 130 Class Notes, “Survey Sampling” for an introduction with practice data; and see Levy & Lemeshow (1999), which is the principal source of the following notes. Commands changed in Stata-8.

Stata survey-statistics format commands

. svydescribe
. svyset, clear

. svyset [pw=weightvar], stata(stratvar) psu(psuvar) [last term is name of variable]
. svydes

- See Stata instructions for the command sampsi.

- svy commands with “if” give the wrong CI; use subpop or by instead of “if” (the same applies to bootstrapping)

- do not use LR-test with svystats, or otherwise with pweight. Instead use either svytest (if # clusters <~100) or test (which in this instance gives a Wald test)

- Finite population correction (fpc): computes adjusted N for se estimates (N – n/N); used only in simple random sampling without replacement. That is, it accounts for the reduction in variance that occurs when sampling without replacement from a finite population, as compared to sampling with replacement. Use fpc() option for cases of simple random sampling or stratified random sampling without replacement of psu’s within each stratum with no subsampling within psu’s. Including fpc() reduces the variance estimate, but minimally if N-psu’s is large relative to sampled-n-psu’s. To use, set fpc() to Nh, the var representing the total number of psu’s per stratum in the population (e.g., hid in datafile comprised of individual household members). Caution: you must know the total population-parameter of the pertinent var (e.g., total pop-N in each stratum or cluster) in order to use fpc, so thus we will rarely if ever use fpc

- Recall that that unequal nonresponse rates across strata &/or clusters must be adjusted for
How to set survey-stats in Stata for various samples

simple random sample

random sample of one hospital from a population (hospno) of 25 hospitals; enumeration unit (i.e. population) is #births (N=773) in the sampled hospital during the previous year; in sum, what Stata needs for a simple random sample is (1) weighting var & (2) total enumeration units of population (N) from which sample is drawn

. svyset [pw=weight1], fpc(birth) momsag.dta; sampling weight=N/n
 birth=total N

[psu <obs>is hospno (total #hospitals), which=25; in this case psu is the enumeration unit, but this is not so in all cases]

. svymean momsag compare with: su momsag
. svytotal momsag compare with: sumsum momsag
egen rsum=sum(momsag)

random sample of 40 workers from total enumeration units (i.e. population, N: popsize) of 1200 workers; includes (1) weighting var & (2) total enumeration units of population (N) from which sample is drawn

. svyset [pw=wt1], fpc(popsize) workers.dta; sampling weight=N/n
 popsize=total N

. svymean fvc, by(exposure) simple random sample with subdomains

summary: what is required for simple random sampling is just two parameters, the total #enumeration units(N) from which the sample is drawn & the weighting var (inverse of sampling fraction n/N; i.e. weighting var=N/n). In these cases, birth=N & popsize=N—i.e. using fpc to denote sample size obtains the parameter, N, used in computing the finite population correction \((N – n)/N\), which, in turn, is used to compute se estimates (Levy & Lemeshow 52-55, 75-76)

systematic random sampling

- every k-obs, when k=N/n is an integer (to yield unbiased estimates; does not require prior knowledge of population size (N)
- repeated systematic sampling: also yields unbiased estimates & does not require prior knowledge of population size (N) (Levy & Lemeshow 101-9)
 - example (workloss.dta): take a systematic random sample of 18 workers from the list of 162 workers (id) to estimate the mean of workdays lost per worker due to acute illness (dayslost). Thus, sample one of every nine workers, which, however, we can do by taking six systematic samples containing three workers each (sampling interval 162/3=54, so we take six systematic samples of 1 in 54 workers). To do this we first choose 6 random numbers between 1 and 54, and then we choose systematic samples of 1 in 54 beginning each with a random number.
 - workloss.dta: cluster is a number from 1 to 54 identifying the position of the sampling frame of the first element in the particular sample cluster; xi is the total of x, the workloss days for the three workers in each cluster; wt1 is the ratio of total clusters, \(M\), to sample clusters,
\[m, \text{ and equals } 54/6=9; \text{ } x_{\text{bar}} \text{ is the mean number of workloss days among the three workers in each cluster; } M \text{ is the total number of clusters of 3 workers in the population of 162 workers and equals 162/3=54} \]

\begin{verbatim}
.svyset [pw=wt1], fpc(M)
.svymean x_{\text{bar}}
\end{verbatim}

\textit{in sum: use fpc M only when a sample of clusters is drawn from N-population}

\textit{clusters}

\begin{verbatim}
.stratified random sampling

.svyset [pw=weighta], strata(iblevel)
.svyset fpc tothosp
\end{verbatim}

\begin{verbatim}
[psu—not entered—#obs]
.svytotals births
.svytotals births, by(iblevel)
\end{verbatim}

\textit{in sum: use this approach (fpc tothosp) only when you know the total population-N within each stratum & you are drawing a sample from this total-N; this is not applicable to, e.g., the World Bank surveys because we don’t know the total population-N in each city for each stratum (in such cases use only pweight & strata, or, if applicable, use pweight, strata & psu [clusters]; see below)}

\begin{verbatim}
.stratification after sampling

.svyset [pw=sampwt], strata(stratum) fpc(npop)
\end{verbatim}

\begin{verbatim}
[psu—not entered—yields #obs]
.svy:totals twin
.svy:totals twin, by(quart1)
\end{verbatim}

\textit{in sum: use fpc npop only if you know total population-N for each stratum, which is not the case for the World Bank surveys (see notes under stratified random sampling)}

\begin{verbatim}
.one-stage clustered sampling

.svyset [pw=wt1], fpc(M) psu(devlpmnt)
\end{verbatim}

\begin{verbatim}
.svy:totals nstnrs nge66
.svy:means nstnrs hhneedvn
.svy:ratios nstnrs nge65
.svy:means nge65dv
\end{verbatim}

\textit{in sum: use this approach (fpc M) only if you are drawing a sample of clusters from a total population-N of clusters, which is not the case in the World Bank surveys}
two-stage clustered sampling

. svyset [pw=w], psu(hospno) il10pt2.dta
 hospno=total # of clusters in the pop
. svy:total dxdead
 dxdead=admitted or discharged dead
. svy:ratio dxdead lifethrt
 lifethrt=admission of patient with life-threatening illness

\textit{in sum: in this configuration, Stata cannot use both \texttt{psu} & \texttt{fpc}, so the latter is not used (see example for il10pt2.dta in Levy & Lemeshow)}

probability proportional to size sampling

. svyset [pw=wstar], psu(drawing) hospslet.dta
 drawing=# clusters
. svy:total lifethrt dxdead
. svy:ratio dxdead lifethrt

\textit{In sum: in this configuration, Stata cannot use both \texttt{psu} & \texttt{fpc}, so the latter is not used}

\textbf{Stata survey-set & describe procedures}

. svyset [pw=wtvar], strata(res_ses) psu(hid) example from World Bank Teguc & Salv: individual-level data
 hid: for individuals clustered by households

. svydes
. svyset, clear
 to delete \texttt{svyset}

\textit{In sum: use \texttt{fpc} only if you know the total pop-parameter (e.g., total pop-N for each stratum or cluster)}

\textbf{Stata survey statistics}

. svy:tab xcat1 xcat2: two-way table
. svy:tab xcat1 xcat2, col
. svy:tab xcat1 xcat2, row per
. svy:test x1 x2: hypothesis test or test if cluster size>100
. svy:lc: estimate linear combinations such as differences of means and of regression coefficient
. svy:mean
. svy:prop
. svy:ratio
. svy:total

. svy:reg
. svy:logit
. svy:olog eform
. svy:mlog rr
. svy:probt
. svy:oprob
Examples

- **svydes**
 - **svymean** dwelf [note: var must not be weighted separately/individually, but rather only via the svy-weighting procedure]
 - **svy:mean** dwelf, subpop(lte730) var: lte730=1
 - **svy:mean** dwelf, subpop(lte730) in f/50 (complete) (95) [or: (available) (99)]
 - **svy:prop** id, subpop(lte730) [note: first sort id]
 - **svyset**, clear

If necessary to collapse psu’s & re-set survey stats:

- **gen** newstr=stratid
- **gen** newpsu=psuid
- **replace** newpsu=psuid + 2 if stratid==1
- **replace** newstr=2 if stratid==1
- **svyset** strat newstr
 - **svyset** psu newpsu
- **svydes** x1, bypsu

- **svy:mean** x1 x2
 - **svy:mean** x1 x2, obs
 - **svy:mean** x1 x2, com ci deff
 - **svy:test** x1 x2
 - **svy:mean** x1 x2, com ci deff
 - **svy:lc** x1 - x2, deff

- **svy:mean** x1 x2, subpop(female)
 - **svy:mean** x1 x2, subpop(female) obs
 - **svy:mean** x1 x2, subpop(female) com ci deff

*Note: "subpop" only works for a binary var’s 1-level. So convert any multilevel categorical var into a series of 0/1 dummy vars; or for a dummy var create another, complementary dummy var: male 0=female 1=male; female 0=male 1=female.

Then specify the 1-level of any dummy var as "subpop." Alternatively, simply specify, e.g., either "by(male)" or "by(female)" to yield the data for male & female.

- **svy:mean** x1, by(female)
 - **svy:mean** x1, by(female black)
. svy:ratio x1 x2
 provides more accurate mean-estimate
 svy:ratio x1 x2, obs
 svy:ratio x1 x2, com ci deff

. svy:total x1 x2
 svy:total x1 x2, obs
 svy:total x1 x2, com ci deff
 svy:lc x1 – x2, deff
 must have equal obs; run
 svy:total, by(female)
 com beforehand
 svy:total, by(female) obs
 svy:total, by(female) com ci deff
 svy:total, subpop(hispanic)
 svy:total, subpop(hispanic) com ci deff

. svy:tab x1 x2
 svy:tab x1 x2, row se ci
 svy:tab x1 x2, row se ci format(%7.4f)
 no row totals
 svy:tab, row se ci nomarg

. svy:tab x1 x2 x3, tab(x4) row
 svy:tab gender race, tab(income) row
 computes proportions
 relative to a specified var

. svy:reg y x1 x2 x3
 svy:reg y x1 x2 x3, deff
 linktest
 svy:test x1 x2
 svy:lc x1 – x2, deff

. svy:logit y x1 x2 x3
 linktest
 svy:logit y x1 x2 x3, deff
 svy:logit, or
di(or – 1)*100
 svy:test x1 x2
 svy:lc x1 – x2, deff
 displays previous results as
 odds ratio; display %
 change

To combine subpop() with by():
. gen black=(race==1) if race!=.
 svy:mean x1, subpop(black) by(marital age20)
do not use if x1==

. svy:mean, ci deff deft meff meft obs size
deft & ci are default

. svy:total x1, by(female)
same syntax as svymean

. svy:ratio x1 x2
 computes x1/x2 ratio
 no obs or com

alternatively: svymean x1, subpop(x2)
perhaps easier to do if
x2 is set up appropriately

. svy:prop x1 x2
 svy:prop x1 x2, subpop(female)
 svy:prop x1, by(white female)
. svyset fpc hid
see Levy & Lemeshow
svyset
svy:mean x1

. svy:reg y x1 x2 x3 x4
svy:test x1 x2
svy:test x1 x2, b

. svy:mlogit health female black age age2
svy:test [good] female=[excellent] female, notest
svy:test [good]black=[excellent]black, accum

How to do a design-based analysis (Levy & Lemeshow, chap. 16)

1. Identify the following elements of the sample design: stratification; clustering vars used; pop sizes required to determine fpc's
2. Using the above info, determine the sampling weight for each sample object
3. Determine for each sample record a final sampling weight that takes into consideration any nonresponse & poststratification adjustments that are desired
4. Ensure that all stratification, clustering, & pop size data required for an appropriate design-based analysis are identified on each sample record
5. Determine the procedure & set of commands for performing the required analysis for the particular software package used
6. Run the analysis & interpret the findings

How to incorporate stratification on several vars simultaneously [Stata digest v4 #872]: the following does not work if unequal sampling was done at the various levels of stratification; in that case, use SUDAAN)

1. egen stratvar=group(industry region size)
2. do crosstabs of psu with each individual stratification var to see if there's overlap

How to deal with the following design: persons clustered at various sites, which in turn are stratified by geographic region--use pweight & cluster options, & include fixed effects for the regions [Stata digest v4 #872]