Chapter 11
Alcohols and Ethers

1. Select the longest chain containing the hydroxyl and change the suffix ending of the parent alkane from -e to -ol.
2. Number the parent to give the hydroxyl the lowest possible number.
3. The other substituents take their locations accordingly.

\[
\text{CH}_3\text{CH}_2\text{CHCH}_2\text{CH}_2\text{CH}_2\text{OH}
\]

4-methyl-1-hexanol

Common alcohols with other groups

- Benzyl alcohol
- 2-Propenol
- 2-Propynol

Phenols contain a hydroxy group, but are not classified as an alcohol.

- Phenol
- p-Methylphenol

Common names are still allowed to use.

Nomenclature of Alcohols – Systematic names

- Alcohols with two hydroxyls are called diols in nomenclature and glycols in common nomenclature.
Nomenclature of Ethers

Common Names
- The groups attached to the oxygen are listed in alphabetical order.

\[
\begin{align*}
\text{CH}_3\text{OCH}_2\text{CH}_3 & \quad \text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 & \quad \text{C}_6\text{H}_5\text{OC} & \quad \text{CH}_3 \\
\text{Ethyl methyl ether} & \quad \text{Diethyl ether} & \quad \text{tert-Butyl phenyl ether}
\end{align*}
\]

IUPAC
- Ethers are named as having an alkoxyl substituent on the main chain.

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 & \quad \text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 & \quad \text{CH}_3\text{OCH}_2\text{CH}_3 \\
2\text{-Methoxypentane} & \quad 1\text{-Ethoxy}-4\text{-methylbenzene} & \quad 1,2\text{-Dimethoxyethane}
\end{align*}
\]

Physical Properties of Alcohols and Ethers

1. Ether boiling points are roughly comparable to hydrocarbons of the same molecular weight.
 - Molecules of ethers cannot hydrogen bond to each other.
2. Alcohols have considerably higher boiling points.
 - Molecules of alcohols hydrogen bond to each other.

\[
\begin{align*}
\text{CH}_3\text{OH} & \quad \text{HO-CH}_2\text{OH} & \quad \text{HO-CH}_2\text{CHOH}
\end{align*}
\]

3. Both alcohols and ethers can hydrogen bond to water and have similar solubilities in water (5 C or more insoluble).
 - Diethyl ether and 1-butanol have solubilities of about 8 g per 100 mL in water.

Cyclic ethers

Cyclic ethers can be named using the prefix oxa-

Three-membered ring ethers can be called oxiranes; commonly called epoxides and named as alkene oxides.

Four-membered ring ethers can be called oxetanes.

\[
\begin{align*}
\text{Oxacyclopropane or epoxide (ethylene oxide)} & \quad \text{Oxacyclotetrahydrofuran or oxetane} \\
\text{Oxacyclononane (tetrahydrofuran) & } \quad \text{1,4-Dioxacyclohexane (1,4-dioxane) & THF and dioxane are common solvents}
\end{align*}
\]

Synthesis of Alcohols from Alkenes – all previous

1. Acid-Catalyzed Hydration of Alkenes
 - This is a reversible reaction with Markovnikov regioselectivity.

\[
\begin{align*}
\text{CH}_2=\text{CH}_2 & + \text{H}_2\text{O} \quad \xrightarrow{\text{H}^+} \quad \text{CH}_3\text{CH}_2\text{OH} \\
\text{Alkenes} & \quad \text{Water} & \quad \text{Alcohol}
\end{align*}
\]

2. Oxymercuration-demercuration
 - This is a Markovnikov addition which occurs without rearrangement.

\[
\begin{align*}
\text{C}_2\text{H}_4 & + \text{H}_2\text{O} + \text{Hg(OAC)}_2 \quad \xrightarrow{\text{THF}} \quad \text{CH}_3\text{CH(OH)}_2 \\
\text{Oxymercuration} & \quad \text{Demercuration}
\end{align*}
\]

\[
\begin{align*}
\text{HO} & \quad \text{H}_2\text{O} \quad \text{H}_2\text{O} \\
\text{BO} & \quad \text{H}_2\text{O} \quad \text{H}_2\text{O}
\end{align*}
\]
3. Hydroboration-Oxidation
 - This addition reaction occurs with anti-Markovnikov regiochemistry and syn stereochemistry

 ![Reaction Diagram]

 - Hydroboration
 - Oxidation

Alcohols from RX
 - Alcohols are products of $S_{N}2$ and occasionally $S_{N}1$ reactions of RX
 - Limited usefulness as a synthesis route because RX is usually made from alcohol.

 ![Reaction Diagram]

Alcohols as Acids
 - Alcohols have acidities similar to water
 - Sterically hindered alcohols such as tert-butyl alcohol are less acidic (have higher pKa values)
 - Why?: The conjugate base is not well solvated and so is not as stable
 - Alcohols are stronger acids than terminal alkynes and primary or secondary amines
 - Relative Acidity
 \[H_2O > ROH > RCI = CH > H_2 > NH_2 > RH \]
 - An alkoxide can be prepared by the reaction of an alcohol with sodium or potassium metal

 ![Acidic Strength Table]
Conversion of Alcohols into Leaving Groups

1. Monofunctionalized carbons are critical structures, both for their own purposes and as intermediates.
2. Hydroxyl groups are poor leaving groups.
3. Several methods are available to convert alcohols into better leaving groups.

\[
\text{R-OH} \rightarrow \text{R-X}
\]

\(X = \text{Br, Cl, OSO}_2R'\)

Conversion of Alcohols into Alkyl Halides

Three general methods are available:

1. Hydrogen halides
2. Phosphorus tribromide
3. Thionyl chloride

Reaction of Alcohols with Hydrogen Halides

The order of reactivity is as follows:
- Hydrogen halide: HI > HBr > HCl > HF
- Type of alcohol: 3° > 2° > 1° < methyl

Mechanism of the Reaction of Alcohols with HX
- \(S_n 1\) mechanism for 3°, 2°, allylic and benzylic alcohols

Primary and methyl alcohols undergo substitution by an \(S_n 2\) mechanism.
Primary and secondary chlorides can only be made with the assistance of a Lewis acid such as zinc chloride.
Reaction of Alcohols with PBr₃ and SOCl₂

These reagents only react with 1° and 2° alcohols in SN₂ reactions
- Convert the hydroxyl to an excellent leaving group
- No rearrangements

Phosphorus tribromide

\[
3 \text{R-OH} + \text{PBr}_3 \rightarrow 3 \text{R-Br} + \text{H}_3\text{PO}_4
\]

(1° or 2°)

Thionyl chloride

\[
\text{R-OH} + \text{SOCl}_2 \rightarrow \text{R-Cl} + \text{SO}_2 + \text{HCl}
\]

(1° or 2°)

Often an amine is added to react with HCl formed in the reaction

\[
\text{R}_2\text{NH} + \text{HCl} \rightarrow \text{R}_2\text{NH}^+ + \text{Cl}^-
\]

Sulfonate Esters: Tosylates, Mesylates, and Triflates

The hydroxyl group of an alcohol can be converted to a good leaving group by conversion to a sulfonate ester

- **Sulfonyl chlorides** are used to convert alcohols to sulfonate esters
 - Base is added to react with the HCl generated

A sulfonate ion (a weak base) is an excellent leaving group

- If the alcohol OH is at a stereogenic center then the overall reaction with the nucleophile proceeds with inversion of configuration
- Formation of a sulfonate ester proceeds with retention of configuration
Triflate anion is such a good leaving group that even vinyl triflates can undergo SN1 reaction

\[
\text{C} = \text{C} + \text{OSO}_2\text{CF}_3 \rightarrow \text{C} = \text{C}^+ + \text{OSO}_2\text{CF}_3^-
\]

Vinyllic triflate
Vinyllic cation
Triflate ion

Example of product in ethanol

1. Ethers by Intermolecular Dehydration of Alcohol
 - Primary alcohols can dehydrate to ethers
 - This reaction occurs at lower temperature than the competing dehydration to an alkene
 - This method generally does not work with secondary or tertiary alcohols because elimination competes strongly

\[
\begin{align*}
\text{H}_3\text{C} &\text{CH}_3 &\text{CH}_2\text{OH} \\
\overset{180^\circ\text{C}}{\rightarrow} &\text{CH}_3 &\text{CH}_2\text{CH}_2\text{H} \\
\text{H}_3\text{C} &\text{CH}_3 &\text{CH}_2\text{OH} \\
\overset{140^\circ\text{C}}{\rightarrow} &\text{CH}_3 &\text{CH}_2\text{OCH}_2\text{CH}_3
\end{align*}
\]

- Ethene
- Diethyl ether

Predict the reaction mechanism!

The mechanism is an SN2 reaction

1. protonation

\[
\text{CH}_3\text{CH}_2\text{O}^{-} + \text{H}^+ \rightarrow \text{CH}_3\text{CH}_2\text{OH}
\]

2. Nucleophilic attack by second ROH

\[
\text{CH}_3\text{CH}_2\text{O}^{-} + \text{CH}_3\text{CH}_2\text{H} \rightarrow \text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 + \text{H}^+
\]

3. deprotonation

\[
\text{CH}_3\text{CH}_2\text{O}^{-} + \text{H}^+ \rightarrow \text{CH}_3\text{CH}_2\text{OH}
\]

2. Williamson Ether Synthesis
 - This is a good route for synthesis of unsymmetrical ethers
 - Alkyl halide or sulfonate should be primary or methyl to avoid E2
 - If R = t-butyl, R' must be methyl
 - Modest yields with secondary halides if both substrates unhindered
 - Substitution is favored over elimination at lower temperatures

\[
\begin{align*}
\text{R} - \text{O}^- + \text{Na}^+ &\rightarrow \text{R}^- + \text{Na}^+\text{L} \\
\text{R}^+ &\rightarrow \text{R}^- + \text{Na}^+\text{L}
\end{align*}
\]

 limitations?
3. Synthesis of Ethers by Alkoxymercuration-Demercuration

Same reaction as used for hydration of alkenes, except using an alcohol as the nucleophile (instead of the water)

![Chemical structure](attachment:image.png)

4. Ethers from carbocations plus alcohols

Generating a carbocation in an alcohol as solvent can lead to ethers

![Chemical structure](attachment:image.png)

Works well only for 3° C⁺

Use of t-butyl ethers as protecting groups

Protecting group: a group added to insulate one sensitive functional group to allow a reaction at another part of the molecule

- Protecting group is later removed

Step 1: Formation of t-butyl ether to protect a hydroxy group

\[
R\text{-CH}_2\text{-OH} + \overset{\text{H}_2\text{SO}_4}{\text{H}}\rightarrow R\text{-CH}_2\text{-O}^+ + \overset{\text{Bu}}{\text{Bu}}
\]

Step 2: reaction elsewhere

\[
R\text{-CH}_2\text{-O}^+ + \overset{\text{Bu}}{\text{Bu}}
\]

Step 3: removal of t-butyl group with dilute aqueous acid

Example: t-butyl ethers as protecting group

Challenge: the alkylation of an alkyne by an alkyl halide that also contains a hydroxy group

\[
\text{HOCH}_2\text{CH}_2\text{CH}_2\text{Br} \quad \text{Na} = \text{CH} \\
\text{HOCH}_2\text{CH}_2\text{CH}_2\text{C} = \text{C} \quad \text{4-Pentyn-1-ol}
\]

First step fails, Why?

\[
\text{HOCH}_2\text{CH}_2\text{CH}_2\text{Br} \rightarrow (\overset{\text{H}_2\text{SO}_4}{\text{H}})\text{CH}_2\text{CH}_2\text{C} = \text{C} \quad \text{CH} \quad \text{4-Pentyn-1-ol} \\
(\overset{\text{CH}_3\text{COOH}}{\text{CH}_3\text{COOH}})\text{CH}_2\text{CH}_2\text{Br} \rightarrow (\overset{\text{Na} = \text{CH}}{\text{Na} = \text{CH}})\text{CH}_2\text{CH}_2\text{C} = \text{C} \quad \text{CH} + (\overset{\text{CH}_3\text{COH}}{\text{CH}_3\text{COH}}) \\
4\text{-Pentyn-1-ol}
\]
Silyl Ether Protecting Groups

Silyl ethers are widely used protecting groups for alcohols

- The tert-butyl dimethylsilyl (TBDMS) ether is common
- The protecting group is introduced by reaction of the alcohol with the chlorosilane in the presence of an aromatic amine base
- The silyl ether protecting group is removed by treatment with fluoride ion (e.g. from tetrabutyl ammonium fluoride)

\[
\text{R-O-H + CH_3ClSi(C_2H_5)_2 >> R-O-Si(C_2H_5)_3 + HCl}
\]

Reactions of Ethers

Acyclic ethers are generally unreactive, except for cleavage by very strong acids to form the corresponding alkyl halides

- Dialkyl ethers undergo S_n2 reaction to form 2 equivalents of the alkyl bromide

\[
\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 + 2 \text{HBr} \rightarrow 2 \text{CH}_3\text{CH}_2\text{Br} + \text{H}_2\text{O}
\]

Epoxides: a reactive cyclic ether

- Epoxides are three-membered ring cyclic ethers
 - These groups are also called oxiranes

1,2-Epoxycyclohexanes (cyclohexene oxide)

Because of ring strain in the three-membered ring, these ethers are reactive and useful intermediates

Epoxides are formed by reaction of alkenes with peroxy acids

This process is called epoxidation and involves syn addition of oxygen

One step transfer of an oxygen atom via a cyclic transition state
Magnesium monoperoxyphthalate (MMPP) is a common and safe peroxo acid for epoxidation.

Epoxidation is stereospecific:
- Epoxidation of cis-2-butene gives the meso cis oxirane.
- Epoxidation of trans-2-butene gives the racemic trans oxirane.

Epoxides are much more reactive than regular ethers:
- Strain energy is released in opening the three-membered ring.
- Acid-catalyzed opening of an epoxide occurs by initial protonation of the oxygen, making the epoxide even more reactive.
- Acid-catalyzed hydrolysis of an epoxide leads to a 1,2-diol.

Epoxides + HZ:
- Acids that contain a nucleophile Z also open epoxide rings by a two-step sequence.
- HCl, HBr and HI, as well as H₂O and ROH in the presence of acid, all open an epoxide ring in this manner.

Epoxides + HZ: examples

What does second example tell us abut mechanism?
More information about mechanism

Summary of information

- Not pure S_N1 (no free carbocation):
 - no loss of stereochemistry
 - no rearrangements
- Not regular S_N2
 - Nucleophile would go to 1°
 - 3°>2°>1°

Merged mechanism

Base-catalyzed reaction with strong nucleophiles (e.g. an alkoxide or hydroxide) occurs by an S_N2 mechanism

- The nucleophile attacks at the less sterically hindered carbon of the epoxide

Bridged ion maintains stereochemistry (backside), but directs incoming Nucleophile to more stable carbocation
• Ring opening of an epoxide with either a strong nucleophile or an acid HZ is regioselective.
• Site selectivity of these two reactions is exactly the opposite!!

Summary of epoxide openings

Opening of the following epoxide with water under acid catalyzed conditions gives the trans diol

Anti 1,2-Dihydroxylation of Alkenes via Epoxides

Epoxide ring-opening is a stereospecific process
Options for synthesis of diols

- **OsO₄ or KMnO₄ (cold)**
- 1. MMPP
- 2. H₂O⁺ (dil)

Syn addition

Trans product via epoxide

Example in the synthesis of a bronchodilator

Predict the product

Phase Transfer Catalysis

- General problem: anionic nucleophiles tend to be soluble in water, but not organic solvents

Crown ethers