Chapter 18
Alddehydes and Ketones
Reaction at the α-carbon of carbonyl compounds

The Acidity of the α Hydrogens of Carbonyl Compounds: Enolate Anions

- Hydrogens on carbons α to carbonyls are unusually acidic.
- The resulting anion is stabilized by resonance to the carbonyl.

The enolate anion can be protonated at the carbon or the oxygen.
- The resultant enol and keto forms of the carbonyl are formed reversibly and are interconvertible.

Keto and Enol Tautomers
- Enol-keto tautomers are constitutional isomers that are easily interconverted by a trace of acid or base.
- Most aldehydes and ketones exist primarily in the keto form because of the greater strength of the carbon-oxygen double bond relative to the carbon-carbon double bond.
p-Dicarbonyl compounds exist primarily in the enol form

The enol is more stable because it has a conjugated σ system and because of stabilization of the enol through hydrogen bonding.

![Resonance stabilization of the enol form]

Mechanism for Base- and Acid-catalyzed enolization

First – abstraction of the β-hydrogen

First – protonation of the oxygen from the carbonyl group

Reactions via Enols and enolates - Racemization

Consequences of the keto-enol equilibration is the racemization of the chiral carbonyl compounds into racemic mixture in the basic or acidic conditions since enols are achiral intermediates.

Halogenation of Ketones

Ketones can be halogenated at the α position in the presence of acid or base and X₂. Base-promoted halogenation occurs via an enolate.

1. **Step 1**
 - Enolate formation

2. **Step 2**
 - Halogenation reaction
Acid-catalyzed halogenation proceeds via the enol.

Important

Overall effect α-substitution: Replacement of proton with electrophile.

Haloform Reaction

Reaction of methyl ketones with X₂ in the presence of base results in multiple halogenation at the methyl carbon.

Haloform Reaction

When methyl ketones react with X₂ in aqueous hydroxide the reaction gives a carboxylate anion (carboxylic acids) and a haloform (CX₃H).

α-Halo Carboxylic Acids: The Hell-Volhard-Zelinski reaction

Carboxylic acids with α-hydrogens react with bromine or chlorine to give α-halo carboxylic acids.

How does the reaction occur?
Formation of Lithium Enolates

Enolates can be conveniently generated by treatment of ketones with strong bases such as LDA.

\[\text{Ketone} + \text{LDA} \rightarrow \text{Enolate} \]

Since base employed is a weaker base than the enolate, this is not a very good approach.

This is a good method since base employed is a stronger base than the enolate.

Preparation of LDA

- **Lithium diisopropylamide (LDA or Li(NiPr)_2)**

Regioselective Formation of Enolate Anions

Unsymmetrical ketones can form two different enolates.

- **The thermodynamic enolate** is the most stable enolate, i.e., the one with the more highly substituted double bond.
 - A weak base favors the thermodynamic enolate because an equilibrium between the enolates is established.

- **The kinetic enolate** is the enolate formed fastest and is usually the enolate with the least substituted double bond.
 - A strong, sterically hindered base such as lithium diisopropylamide favors formation of the kinetic enolate.

Direct Alkylation of Ketones via Lithium Enolates

Enolates can also be alkylated with primary alkyl, benzyl, and allylic halides via an S_N2 reaction.

Unsymmetrical ketones can be alkylated at the least substituted position if LDA is used to form the kinetic enolate.
Direct Alkylation of Esters

Enolates generated from esters (α-carbanions) can also be alkylated with primary alkyl halides via an S_N2 reaction.

- **β-Dicarbonyl compounds** have two carbonyl groups separated by a carbon.
 - Protons on the α-carbon of β-dicarbonyl compounds are acidic ($pK_a = 9-10$).
 - Recall that protons for ketones on the α-carbon have $pK_a = 18-20$.
 - This unusually low acidity for organic compounds can be explained by resonance stabilization of the corresponding enolate by two carbonyl groups.

Acidity of organic compounds (pKa's) (Page 111)

- Alkanes and alkenes R-H 45 (40-50)
- Terminal alkynes RC≡CH 25
- α-H of carbonyls (-CO-CH) 20
- Alcohols ROH 16 (3° = 18)
- β-dicarbonyls RCO-CH₂-COR 10
- Phenol C₆H₅OH 10
- Carboxylic acids RCOOH 5

Comparisons: water = 15.7, NH₃ and H₂ about 35

The Acetoacetic Ester Synthesis:

Synthesis of Methyl Ketones (Substituted Acetones)

- **Alkylation**
 - Alkylation of the enolate derived from acetoacetic ester is called the acetoacetic ester synthesis.
 - This is an S_N2 reaction with the ethyl acetoacetate enolate acting as the nucleophile.
 - Please note that contrary to ketones the sodium ethoxide is a sufficient base to generate enolates from β-Dicarbonyl compounds.

Comparisons:

```
CH₃C(=O)CH₂-COCH₃ + NaOEt → CH₃C(=O)CH₂-COCH₂-CH₃ + Na⁺ Et⁻
```

Enolates of β-Dicarbonyl compounds

- β-Dicarbonyl compounds have two carbonyl groups separated by a carbon.
- Protons on the α-carbon of β-dicarbonyl compounds are acidic ($pK_a = 9-10$).
- Recall that protons for ketones on the α-carbon have $pK_a = 18-20$.
 - This unusually low acidity for organic compounds can be explained by resonance stabilization of the corresponding enolate by two carbonyl groups.
Hydrolysis of the ester and heating of the resultant β-ketoacid causes decarboxylation. The product is a substituted acetone derivative (methyl ketones).

Specific example of the application of ethyl acetoacetate towards synthesis of monosubstituted acetone (methyl ketones):

1. NaOEt/EtOH
2. H_{2}O

Ethyl acetoacetate (acetonaacetic acid)

Ethyl butyroacetoacetate (alkyl ketones)

2-Heptanone (52-61% overall from ethyl acetoacetate)

A second alkylation can be performed. A stronger base such as potassium tert-butoxide must be used to deprotonate the monoalkyl ester.

Example: Application of Acetoacetic ester towards synthesis of the α-(di)substituted methyl ketones (acetones)

Home take message:

Ethyl acetoacetate ion is the synthetic equivalent of Acetone enolate.

A mono-substituted acetone

A di-substituted acetone
If α-halo esters are used to alkylate the acetoacetic ester enolate, γ-keto acids are obtained (see review Problem 18.8)

Acylation of Ethyl Acetoacetate anion

Acetoacetic ester anion (enolate) can also be acylated with acyl halides or anhydrides to produce β-diketones. The reaction is carried out in aprotic solvents such as DMF or DMSO because these will not destroy the acylating reagents.

The Malonic Ester Synthesis:

Synthesis of Substituted Acetic Acids

(1) Alkylation of diethylmalonate, (2) hydrolysis of the diester to the β-dicarboxylic acid, and (3) decarboxylation steps can be used to synthesize mono- and disubstituted acetic acids. The mechanism is analogous to that for the acetoacetic ester synthesis.

In step 1 the stabilized anion is formed.

In step 2 the anion is mono- or dialkylated using \(S_N 2 \) reactions with primary alkyl halides.
In step 3 the mono- or dialkylated product is hydrolyzed and decarboxylated.

Home take message:
- Diethyl malonate anion is the synthetic equivalent of acetic acid dianion.

The Application of the Malonic Ester in Organic Synthesis

Malonic Ester can be applied towards synthesis of 3-, 4-, 5-, and 6-membered rings. For example terminal dihalides can react to form rings by alkylation of one molar equivalent of malonate. The resulting haloalkylmalonic ester can undergo internal alkylation via S_2 reaction.

Reactions of Other Active Hydrogen Compounds
- Compounds in which the hydrogen atoms of a methylene (-CH$_2$-) group are made acidic by two attached electron-withdrawing groups are called active hydrogen compounds or active methylene compounds.
- A variety of electron-withdrawing groups can produce enhanced α hydrogen acidity.
For example, deprotonation of ethyl cyanoacetate forms a resonance-stabilized anion, which can then undergo alkylation even with secondary alkyl halides.

Enamines have a nucleophilic carbon and are the equivalent of ketone and aldehyde enolates. The nitrogen of enamines is also nucleophilic.

Enamines can be acylated and alkylated. C-Acylation leads to β-diketones. N-Acylated products are formed, but they are unstable and act as acylating agents themselves (intramolecular acylation!).

Synthesis of Enamines: Stork Enamine Reactions

- Aldehydes and ketones react with secondary amines to form enamines (see Section 16.8C).
- The reaction is catalyzed by acid.
- Removal of water drives enamine formation to completion.
- Cyclic amines are often used.

Lack of hydrogen on nitrogen atom excludes formation of imine and therefore enamine is formed.

N-(N-Cytrilethoxy)pyrroline (an enamine)
Alkylation of enamines can lead to some N-alkylation. Similarly to the N-acylated product discussed on the previous slide, the N-alkylated product can also be converted to the C-alkylated product by heating.