Measuring Yield

Joel R. Barber
Notation

- CR is Coupon Rate
- \(c \) is annual coupon
- \(c/2 \) is semiannual coupon
- \(y \) is nominal interest rate (annual rate with same compounding frequency as coupons)
- \(i \) is periodic rate (rate between payment dates)
- \(N \) is number of payments
- \(M \) is maturity value, par value, face value, ...
- \(P \) is price
- \(CY \) is current yield = \(c/P \)
- \(FV \) is the future value
- \(r \) is reinvestment rate
Sources of return

- coupon payments
Sources of return

- coupon payments
- recovery of principal
Sources of return

- coupon payments
- recovery of principal
 - coupon bond: par value
Sources of return

- coupon payments
- recovery of principal
 - coupon bond: par value
 - mortgage: scheduled and prepayments

Joel R. Barber
Chapter 3
Sources of return

- coupon payments
- recovery of principal
 - coupon bond: par value
 - mortgage: scheduled and prepayments
- capital gains – if sold prior to maturity
Sources of return

- coupon payments
- recovery of principal
 - coupon bond: par value
 - mortgage: scheduled and prepayments
- capital gains – if sold prior to maturity
- reinvestment of cash flows
Sources of return
Example

1. 8% par bond matures in 30 years
Sources of return

Example

1. 8% par bond matures in 30 years
2. $Y = 8\%$
Sources of return

Example

1. 8% par bond matures in 30 years
2. $Y = 8\%$
3. Current Yield = $\frac{8}{100} = 8\%$
Sources of return

Example

1. 8% par bond matures in 30 years
2. $Y = 8\%$
3. Current Yield = \(\frac{8}{100} = 8\% \)
4. one year later yield jumps to 9%
Sources of return
Example

1. 8% par bond matures in 30 years
2. \(Y = 8\% \)
3. Current Yield = \(\frac{8}{100} = 8\% \)
4. one year later yield jumps to 9%
5. no built in gain or loss
Sources of return

Example

1. 8% par bond matures in 30 years
2. \(Y = 8\% \)
3. Current Yield = \(\frac{8}{100} = 8\% \)
4. one year later yield jumps to 9%
5. no built in gain or loss
6. Future price:

\[
P_1 = 4 \cdot \frac{1}{.045} \left(1 - (1.045)^{-58} \right) + \frac{100}{(1.045)^{58}}
\]

\[
= 89.754
\]
neglect interest on first coupon

\[
\text{Return} = \frac{89.754 + 8}{100} - 1
\]
\[
= -2.25
\]
neglect interest on first coupon

\[
\text{Return} = \frac{89.754 + 8}{100} - 1 \\
= -2.25
\]

capital loss

\[
\frac{89.754}{100} - 1 \\
= -10.25
\]
neglect interest on first coupon

\[
\text{Return} = \frac{89.754 + 8}{100} - 1
\]
\[
= -2.25
\]

capital loss

\[
\frac{89.754}{100} - 1
\]
\[
= -10.25
\]

partially offset by current yield of 8%
neglect interest on first coupon

\[
\text{Return} = \frac{89.754 + 8}{100} - 1
\]
\[
= -2.25
\]

capital loss

\[
\frac{89.754}{100} - 1
\]
\[
= -10.25
\]

partially offset by current yield of 8%

assume first coupon invested in money market account paying 4%
c.s.a.
neglect interest on first coupon

\[
\text{Return} = \frac{89.754 + 8}{100} - 1
\]

\[
= -2.25
\]

capital loss

\[
\frac{89.754}{100} - 1
\]

\[
= -10.25
\]

partially offset by current yield of 8%

assume first coupon invested in money market account paying 4% c.s.a.

return:

\[
\frac{89.754 + 4(1.02) + 4}{100} - 1
\]

\[
= -2.16\%
\]
Yield measures

1. **coupon rate**
2. **current yield**: annual coupon divided by price
3. **yield to maturity**
 1. IRR on bond. Annual:

\[P = \frac{c}{1+y} + \frac{c}{(1+y)^2} + \cdots + \frac{M + c}{(1+y)^N} \]

2. Semiannual: \(P = \frac{c/2}{1+y/2} + \frac{c/2}{(1+y/2)^2} + \cdots + \frac{M+c/2}{(1+y/2)^N} \)
Perpetuity - the bond that keeps on paying.

\[y = \frac{c}{P} \]
Easy special cases

1. Perpetuity - the bond that keeps on paying.

\[y = \frac{c}{P} \]

2. Zero-coupon - the bond that pays only once.

\[y = \left(\frac{M}{P} \right)^{1/N} - 1 \]
Easy special cases

1. **Perpetuity** - the bond that keeps on paying.

 \[y = \frac{c}{P} \]

2. **Zero-coupon** - the bond that pays only once.

 \[y = \left(\frac{M}{P} \right)^{1/N} - 1 \]

3. **Par-bond** - redeemed for selling price. All yield comes from coupon.

 \[y = CR \]
Relationship between bond price and yield

1. par
2. discount
3. premium
4. example: three bonds: CR = 4%, 6%, 8%, priced at 6% yield

![Graph showing relationship between bond price and yield]

- The graph illustrates the relationship between bond price and yield over time (half years).
- At par bonds, the price is exactly the face value (100 in the graph).
- Discount bonds have a price below par (below the 100 line).
- Premium bonds have a price above par (above the 100 line).

Joel R. Barber ()

Chapter 3
Yield to maturity and true return

two are equal only if cash flows are reinvested at yield to maturity.
Yield to maturity and true return

1. two are equal only if cash flows are reinvested at yield to maturity
2. return > (<=) yield if coupons reinvested at rate > (<=) yield
Yield to maturity and true return

1. two are equal only if cash flows are reinvested at yield to maturity
2. return > (<) yield if coupons reinvested at rate > (<) yield
3. BEY (Bond Equivalent Yield) - annual rate semiannually compounded
Yield to maturity and true return

1. two are equal only if cash flows are reinvested at yield to maturity
2. return > (<) yield if coupons reinvested at rate > (<) yield
3. BEY (Bond Equivalent Yield) - annual rate semiannually compounded
4. EAR or annual-pay basis
Yield to maturity and true return

1. two are equal only if cash flows are reinvested at yield to maturity
2. return \(> (\leq) \) yield if coupons reinvested at rate \(> (\leq) \) yield
3. BEY (Bond Equivalent Yield) - annual rate semiannually compounded
4. EAR or annual-pay basis

 - semiannual

 \[
 (1 + y/2)^2 - 1
 \]
Yield to maturity and true return

1. two are equal only if cash flows are reinvested at yield to maturity
2. return > (<<) yield if coupons reinvested at rate > (<<) yield
3. BEY (Bond Equivalent Yield) - annual rate semiannually compounded
4. EAR or annual-pay basis
 1. semiannual
 \[(1 + y/2)^2 - 1\]
 2. monthly
 \[(1 + y/12)^2 - 1\]
Yield to first call

1. Assume bond is called at first call date

2. Reduce maturity to first call date

3. Substitute call price for par value

4. Compute yield

As a practical matter you should use $\min(y, YTC)$ if the call price is greater than the present value of the remaining cash flows, then $YTC > y$.

Joel R. Barber ()

Chapter 3
Yield to first call

1. Assume bond is called at first call date
2. Reduce maturity to first call date

If the call price is greater than the present value of the remaining cash flows, then \(YTC > y \).
Yield to first call

1. Assume bond is called at first call date
2. Reduce maturity to first call date
3. Substitute call price for par value

If the call price is greater than the present value of the remaining cash flows, then $Y_{TC} > y$.
Yield to first call

1. assume bond is called at first call date
2. reduce maturity to first call date
3. substitute call price for par value
4. compute yield

As a practical matter you should use $\min(y, YTC)$ if the call price is greater than the present value of the remaining cash flows, then $YTC > y$.
1. assume bond is called at first call date
2. reduce maturity to first call date
3. substitute call price for par value
4. compute yield
5. as a practical matter you should use

\[\min\{y, YTC\} \]
Yield to first call

1. Assume bond is called at first call date
2. Reduce maturity to first call date
3. Substitute call price for par value
4. Compute yield
5. As a practical matter, you should use
 \[\min\{y, YTC\}\]
6. If the call price is greater than the present value of the remaining cash flows, then
 \[YTC > y\]
Yield to first call

Example

- 8% callable bond with maturity 20 years
- price = $110
- first call date 5 years
- call price 100

1. yield to maturity = 7.06%
Yield to first call

Example

- 8% callable bond with maturity 20 years
- price = $110
- first call date 5 years
- call price 100

1. yield to maturity = 7.06%
2. yield to call = 5.67%

What if call price = 110

PV of remaining cash flows = 108.61

YTC = Yield to maturity
Yield to first call

Example

- 8% callable bond with maturity 20 years
- price = $110
- first call date 5 years
- call price 100

1. yield to maturity = 7.06%
2. yield to call = 5.67%
3. what if call price = 110
Yield to first call

Example

- 8% callable bond with maturity 20 years
- price = $110
- first call date 5 years
- call price 100

1. yield to maturity = 7.06%
2. yield to call = 5.67%
3. what if call price = 110
4. yield to call = 7.27
Yield to first call

Example

- 8% callable bond with maturity 20 years
- price = $110
- first call date 5 years
- call price 100

1. yield to maturity = 7.06%
2. yield to call = 5.67%
3. what if call price = 110
4. yield to call = 7.27
5. should use yield to maturity of 7.06%
Yield to first call

Example

- 8% callable bond with maturity 20 years
- price = $110
- first call date 5 years
- call price 100

1. yield to maturity = 7.06%
2. yield to call = 5.67%
3. what if call price = 110
4. yield to call = 7.27
5. should use yield to maturity of 7.06%
6. PV of remaining cash flows = 108.61
Yield to first call

Example

- 8% callable bond with maturity 20 years
- price = $110
- first call date 5 years
- call price 100

1. yield to maturity = 7.06%
2. yield to call = 5.67%
3. what if call price = 110
4. yield to call = 7.27
5. should use yield to maturity of 7.06%
6. PV of remaining cash flows = 108.61
7. at call price equal to 108.61, YTC = Yield to maturity
1. project cash flow based upon assumed prepayment speed
2. prepayment speed is fraction of total par value prepaid in a year
3. yield = IRR of projected cash flow stream
Yield spread (or discount margin) for floating rate security

1. project cash flow under assumption future reference rate equals current rate

\[\text{Yield spread} = \text{IRR} - \text{reference rate} \]
Yield spread (or discount margin) for floating rate security

1. Project cash flow under assumption future reference rate equals current rate
2. Compute IRR
Yield spread (or discount margin) for floating rate security

1. Project cash flow under assumption future reference rate equals current rate
2. Compute IRR
3. Yield spread = IRR - reference rate
Yield spread (or discount margin) for floating rate security

Example

- floating rate security
- price 99.3098 per 100 par value
- \(CR = \text{LIBOR} + 80 \text{ bps} \)
- reset every six months
- current reference rate = 10%

\[CR_0 = 10 + .8 = 10.8\% \]
Yield spread (or discount margin) for floating rate security

Example

- floating rate security
- price 99.3098 per 100 par value
- \(CR = \text{LIBOR} + 80 \text{ bps} \)
- reset every six months
- current reference rate = 10%

1. \(CR_0 = 10 + .8 = 10.8\% \)
2. \(C_1, C_2, \ldots, C_{11} = .108 \times 100/2 = $5.4 \)
Yield spread (or discount margin) for floating rate security

Example

- floating rate security
- price 99.3098 per 100 par value
- \(CR = \text{LIBOR} + 80 \text{ bps} \)
- reset every six months
- current reference rate = 10%

1. \(CR_0 = 10 + .8 = 10.8\% \)
2. \(C_1, C_2, \ldots, C_{11} = .108 \times 100/2 = $5.4 \)
3. \(C_{12} = 105.4 \)
Yield spread (or discount margin) for floating rate security

Example

- floating rate security
- price 99.3098 per 100 par value
- \(CR = LIBOR + 80 \text{ bps} \)
- reset every six months
- current reference rate = 10%

1. \(CR_0 = 10 + .8 = 10.8\% \)
2. \(C_1, C_2, \ldots, C_{11} = .108 \times 100/2 = $5.4 \)
3. \(C_{12} = 105.4 \)
4. IRR:

\[
99.3098 = 5.4A(y/2, 12) + \frac{100}{(1 + y/2)^{12}}
\]

solution is: \(y = 10.960 \)
Yield spread (or discount margin) for floating rate security

Example

- floating rate security
- price 99.3098 per 100 par value
- \(CR = \text{LIBOR} + 80 \text{ bps} \)
- reset every six months
- current reference rate = 10%

1. \(CR_0 = 10 + .8 = 10.8\% \)
2. \(C_1, C_2, \ldots, C_{11} = .108 \times 100/2 = \$5.4 \)
3. \(C_{12} = 105.4 \)
4. IRR:

\[
99.3098 = 5.4A\left(y/2, 12\right) + \frac{100}{\left(1 + y/2\right)^{12}}
\]

solution is: \(\{y = 10.960\} \)

5. discount margin = 10.960 – 10 = .96\% = 96 bps
Sources of return

1. coupon payments

2. capital gain or (loss)

3. reinvestment (of coupons over holding period) income

4. return of principal or amortization
Sources of return

1. coupon payments
2. capital gain or (loss)
Sources of return

1. coupon payments
2. capital gain or (loss)
3. reinvestment (of coupons over holding period) income
Sources of return

1. coupon payments
2. capital gain or (loss)
3. reinvestment (of coupons over holding period) income
4. return of principal or amortization
calculate future value to maturity of coupon stream
Determining Interest on Interest

1. calculate future value to maturity of coupon stream
2. subtract dollar value of all coupons
1. calculate future value to maturity of coupon stream
2. subtract dollar value of all coupons
3. remember future value of one dollar annuity with N payments at the rate r is given by

$$S(i, N) = \frac{1}{i}((1 + i)^N - 1)$$
Determining Interest on Interest

Example

- 10-year, 6% (paid semiannually) bond selling for 100
- coupons reinvested at $r = 4\%$ compounded semiannually

1 yield: $y = 6\%$
Determining Interest on Interest

Example

- 10-year, 6% (paid semiannually) bond selling for 100
- Coupons reinvested at $r = 4\%$ compounded semiannually

1. Yield: $y = 6\%$
2. $FV @ 4\%$ csa

\[
FV = 3S(.02, 20) \\
= \$72.892
\]
Determining Interest on Interest

Example

- 10-year, 6% (paid semiannually) bond selling for 100
coupons reinvested at $r = 4\%$ compounded semiannually

1. yield: $y = 6\%$
2. $FV @ 4\%$ csa

$$FV = 3S(.02, 20)$$
$$= \$72.892$$

3. interest on interest

$$72.892 - 3 \times 20 = 12.892$$
Determining Interest on Interest

Example

- 10-year, 6% (paid semiannually) bond selling for 100
- coupons reinvested at \(r = 4\% \) compounded semiannually

1. **yield:** \(y = 6\% \)
2. **FV @ 4\% csa**

\[
FV = 3S(0.02, 20)
\]

\[
= \$72.892
\]

3. **interest on interest**

\[
72.892 - 3 \times 20 = 12.892
\]

4. **sources of return:**
Determining Interest on Interest

Example

- 10-year, 6% (paid semiannually) bond selling for 100
- coupons reinvested at $r = 4\%$ compounded semiannually

1. **yield**: $y = 6\%$
2. **FV @ 4\% csa**

\[
FV = 3S(.02, 20) = 72.892
\]

3. **interest on interest**

\[
72.892 - 3 \times 20 = 12.892
\]

4. **sources of return:**
 - total coupon = 60
Determining Interest on Interest

Example

- 10-year, 6% (paid semiannually) bond selling for 100
- coupons reinvested at $r = 4\%$ compounded semiannually

1. yield: $y = 6\%$
2. FV @ 4\% csa

\[
FV = 3S(.02, 20) \\
= \$72.892
\]

3. interest on interest

\[
72.892 - 3 \times 20 = 12.892
\]

4. sources of return:
 1. total coupon = 60
 2. interest on interest = 12.892
Determining Interest on Interest

Example

- 10-year, 6% (paid semiannually) bond selling for 100
- coupons reinvested at \(r = 4\% \) compounded semiannually

1. yield: \(y = 6\% \)
2. FV @ 4% csa

\[
FV = 3S(.02, 20) \\
= \$72.892
\]

3. interest on interest

\[
72.892 - 3 \times 20 = 12.892
\]

4. sources of return:
 - total coupon = 60
 - interest on interest = 12.892
 - built-in-capital gain (or loss) =

\[
100 - P = 100 - 100 = 0
\]
Promise return equals the yield to maturity if

1. the bond is held to maturity
2. all coupon interest payments are reinvested at the yield to maturity

Total return is the return on the bond that equates the price to the future value of the reinvested coupons.

Suppose you pay $100 for a ten-year bond and reinvest the coupons for the life of the bond. The reinvested coupons grow to $80 at the end of ten years.

You started with $100 dollars; now you have $180.

What is your total return?

\[
\left(\frac{180}{100} \right)^{1/10} - 1 = 6.054\%
\]
Total return

Example

- 10-year 6% csa bond selling for 100
- cash flows reinvested at $r = 4\%$ csa

1. **yield:**

\[
y = 6\%
\]
10-year 6% csa bond selling for 100
- cash flows reinvested at $r = 4\%$ csa

1 yield:
$$y = 6\%$$

2 FV @ 4% csa

$$FV = 100 + 3S(.02, 20)$$
$$= \$172.892$$
Total return

Example

- 10-year 6% csa bond selling for 100
- cash flows reinvested at $r = 4\%$ csa

1. yield:

 \[
 y = 6\%
 \]

2. FV @ 4\% csa

 \[
 FV = 100 + 3S(0.02, 20) = \$172.892
 \]

3. Total Return as BEY:

 \[
 \frac{TR}{2} = \left(\frac{172.892}{100} \right)^{1/20} - 1
 \]
Total return

Example

1. 10-year 6% csa bond selling for 100
2. Cash flows reinvested at $r = 4\%$ csa

1. **yield:**

 \[y = 6\% \]

2. **FV @ 4\% csa**

 \[FV = 100 + 3S(.02, 20) = \$172.892 \]

3. **Total Return as BEY:**

 \[\frac{TR}{2} = \left(\frac{172.892}{100} \right)^{1/20} - 1 \]

4. So

 \[TR = 2 \left[\left(\frac{172.892}{100} \right)^{1/20} - 1 \right] \]
Total return versus reinvestment rate

HPY versus reinvestment rate graph.