Intermediate Microeconomics Outline II: Chapters 6-9

6. Firms and Production
 • Production Function
 • Short-run (at least one fixed input) and Long-run (no fixed inputs)
 • Production with a single variable factor
 ○ Total, Average, and Marginal Products
 ○ Relation between Marginal and Average
 ○ Law of Diminishing Returns
 • Production with two variable inputs (e.g., long-run)
 ○ Isoquants
 ○ Marginal Rate of Technical Substitution: \(MRTS_{L,K} = MP_L/MP_K \) (slope of isoquant)
 ○ Shape of isoquants and substitution (more sharply curved = more complementary)
 ○ Constant, Diminishing and Increasing Returns to Scale

7. Costs
 • Costs in Short-run: FC (from fixed factor K), VC (from variable factor L)
 • Shape of SR Cost Curves: ATC, AVC, MC
 • Long-run Cost Minimizing Inputs
 • Minimum requires \(MRTS_{L,K} = w/r \). Equivalently, \(MP_K/r = MP_L/w \).
 • Deriving the Cost Function
 • Relation of SR and LR Cost Curves
 • In short run, \(MC = w/MP_L \). In long run, \(MC = w/MP_L = r/MP_K \)

8. Competitive Firms and Markets
 • Costs as Opportunity Costs: Explicit and Implicit Costs
 • Perfectly Competitive Markets
 • Price-taking implies \(p = MR \)
 • Profit Maximization: \(MR = MC \) becomes \(p = MC \)
 • Short-run Shutdown condition \((p < AVC) \)
 • Supply is MC curve (above AVC)
 • Profitability (compare \(p \) and \(ATC \))
 • Entry and Exit imply Zero Long-run Economic Profit
 • Increasing and Constant Cost Industries
 • Analysis of Economic Changes (Demand, Costs) in Short and Long Runs
 ○ Demand Shifts
 ○ Changes in Factor Prices
 ○ Productivity Changes
 ○ Taxes
9. Applying the Competitive Model

- Demand Curve as Marginal Value to Consumer (aka Marginal Willingness to Pay)
- Consumer’s Surplus
- Producer Surplus (note: in short run PS = Profit + FC)
- Price Ceilings and Floors
- Price Supports
- Tariffs and Quotas
- Excise Taxes: Excess Burden, Incidence & Elasticity

\[t_D = t \times \frac{|\varepsilon S|}{|\varepsilon S| + |\varepsilon D|}, \quad t_S = t \times \frac{|\varepsilon D|}{|\varepsilon S| + |\varepsilon D|} \]