1. There are two goods. Suppose a consumer has the convex utility function \(u(x_1, x_2) = x_1 + x_2^2 \) and consumption set \(\mathcal{X} = \mathbb{R}_+^2 \). Let prices be \(p = (1, p) \gg 0 \) and income be \(m > 0 \). Suppose further that \(\bar{u} \geq 0 \). If possible for this utility function:
 a) Find the Marshallian (ordinary) demand \(x(p, m) \).
 \textbf{Answer:} The indifference curves are parabolas. Because of the convexity of the utility function, maximum utility will be at a corner. The two possibilities are \((m, 0)\) and \((0, m/p)\). If \(p^2 > m \), the first one is better, if \(p^2 < m \), the second is better, and if \(p^2 = m \), they are tied. It follows that the Marshallian demand is:
 \[
 x(p, m) = \begin{cases}
 (m, 0) & \text{if } p^2 > m \\
 \left\{ (m, 0), (0, \frac{m^2}{p^2}) \right\} & \text{if } p^2 = m \\
 \left(0, \frac{m}{p} \right) & \text{if } p^2 < m
 \end{cases}
 \]
 b) Compute the indirect utility function \(v(p, m) \).
 \textbf{Answer:} Indirect utility is \(v(p, m) = u(x(p, m)) = \max \{ m, m^2/p^2 \} \).
 c) Find the Hicksian (compensated) demand \(h(p, \bar{u}) \).
 \textbf{Answer:} The convex indifference curves imply that expenditure minization also occurs at a corner. We set \(u(x) = \bar{u} \) to find the corners are \((\bar{u}, 0)\) and \((0, \sqrt{\bar{u}})\). The associated expenditures are \(\bar{u} \) and \(p\sqrt{\bar{u}} \). We choose the first if \(\sqrt{\bar{u}} < p \) and the second if \(\sqrt{\bar{u}} > p \). Thus
 \[
 h(p, \bar{u}) = \begin{cases}
 (\bar{u}, 0) & \text{if } \sqrt{\bar{u}} < p \\
 \left\{ (\bar{u}, 0), (0, \sqrt{\bar{u}}) \right\} & \text{if } \sqrt{\bar{u}} = p \\
 (0, \sqrt{\bar{u}}) & \text{if } \sqrt{\bar{u}} > p
 \end{cases}
 \]
 d) Compute the expenditure function \(e(p, \bar{u}) \).
 \textbf{Answer:} Expenditure is \(e(p, \bar{u}) = p \cdot h(p, \bar{u}) = \min \{ \bar{u}, p\sqrt{\bar{u}} \} \).
2. There are two consumers and two goods. Consumer 1 has utility \(u_1(x) = (x_1x_2)^{1/2} \) and income \(m_1 > 0 \). Consumer 2 has utility \(u_2(x) = \min(x_1, 2x_2) \) and income \(m_2 > 0 \). Prices are \(p = (p_1, p_2) \gg 0 \).
 a) Find the Marshallian demand functions for each consumer.
 \textbf{Answer:} Equal-weighted Cobb-Douglas utility requires consumer 1 spend half of his income on each good, so \(x^1(p, m_1) = (m_1/2)(1/p_1, 1/p_2) \). The second consumer has Leontief preferences with \(x_1 = 2x_2 \) at the optimum. Total spending is then \(m_2 = p_1x_1 + p_2x_2 = (2p_1 + p_2)x_2 \) so \(x^2(p, m_2) = (2m_2/(2p_1 + p_2), m_2/(2p_1 + p_2)) \).
 b) Compute aggregate demand.
 \textbf{Answer:} We add the consumer demands to obtain aggregate demand. It is
 \[
 x(p, m_1, m_2) = \left(\frac{m_1}{2p_1} + \frac{2m_2}{2p_1 + p_2}, \frac{m_1}{2p_2} + \frac{m_2}{2p_1 + p_2} \right).
 \]
 c) Show by example that aggregate demand cannot be written as a function of the price vector \(p \) and aggregate wealth \(m = m_1 + m_2 \).
 \textbf{Answer:} Now \(x(p, 2, 0) = (1/p_1, 1/p_2) \) and \(x(p, 0, 2) = (2p_1 + p_2)^{-1}(4, 2) \). Since these only agree when \(2p_1 = p_2 \), the different income distributions yield different demand curves.
3. Suppose Y is a convex technology set (also is non-empty, closed, obeys inaction, no free lunch, and free disposal). Suppose $y \gg 0$. Show there is a price vector with $p \cdot y > \pi(p)$ (20 points). Show that $p \geq 0$ (5 points).

Answer: Now Y is a closed convex set and y is a point outside the set. By the Separation Theorem, there are $p \neq 0$ and $\alpha \in \mathbb{R}$ with $p \cdot y > \alpha > p \cdot z$ for all $z \in Y$. Taking the supremum over $z \in Y$, we find $y \cdot y > \alpha > \pi(p)$.

Now consider $-n\ell \in Y$ by free disposal for $n > 0$. Then $\alpha > p \cdot (-n\ell) = -np\ell$. It follows that $\alpha/n > -p\ell$. Letting $n \to +\infty$, we find $0 \leq p\ell$. Since ℓ was arbitrary, and $p \neq 0$, $p > 0$.

4. A consumer with $X = \mathbb{R}^2_+$ has expenditure function $e(p, \bar{u}) = p_1 + p_2 + \sqrt{p_1 p_2} + (p_1 + 2p_2)\bar{u}$.

a) Find the Hicksian demand function $h(p, \bar{u})$.

Answer: Note that e is concave and homogeneous of degree 1 in prices, as an expenditure function should be. We apply the Shephard-McKenzie Lemma, which says $h = D_p e$. Then

$$h(p, \bar{u}) = \left(1 + \frac{1}{2} \sqrt{\frac{p_2}{p_1}} + \bar{u}, 1 + \frac{1}{2} \sqrt{\frac{p_1}{p_2}} + 2\bar{u} \right)$$

b) Find the indirect utility function $v(p, m)$.

Answer: We use the duality relation $m = e(p, v(p, m))$ to find indirect utility. Then $m = p_1 + p_2 + \sqrt{p_1 p_2} + (p_1 + 2p_2)v(p, m)$, so

$$v(p, m) = \frac{m - p_1 - p_2 - \sqrt{p_1 p_2}}{p_1 + 2p_2}$$

c) Find the Marshallian demand function $x(p, m)$.

Answer: According to Roy’s Identity, $x_\ell(p, m) = -(\partial v/\partial p_\ell)/(\partial v/\partial m)$. Now $\partial v/\partial m = 1/(p_1 + 2p_2)$. After a short calculation, we find

$$x_1(p, m) = 1 + \frac{1}{2} \sqrt{\frac{p_2}{p_1}} + \frac{m - p_1 - p_2 - \sqrt{p_1 p_2}}{p_1 + 2p_2} = \frac{m + p_2 - \frac{1}{2} \sqrt{p_1 p_2} + p_2 \sqrt{\frac{p_2}{p_1}}}{p_1 + 2p_2}$$

$$x_2(p, m) = 1 + \frac{1}{2} \sqrt{\frac{p_1}{p_2}} + \frac{2m - p_1 - p_2 - \sqrt{p_1 p_2}}{p_1 + 2p_2} = \frac{2m - p_1 - \sqrt{p_1 p_2} + \frac{p_1}{2} \sqrt{\frac{p_1}{p_2}}}{p_1 + 2p_2}$$