1. S&P 500 futures trade at 1,620 and one contract is on $250 times the index. The size of your portfolio is $2,500,000 and the portfolio has a beta of 2. How many futures contracts are needed to hedge?
 a. 12.35
 b. 2
 c. 10,000
 d. 6.48

2. In the case of a consumption asset whose futures price is below the no-arbitrage price,
 a. arbitrage strategies implemented by traders will bring the prices back in equilibrium
 b. arbitrage strategies implemented by traders can bring the futures price above the no-arbitrage price
 c. the futures price can stay below the no-arbitrage price
 d. the arbitrage strategy would entail the buying of the consumption asset

3. The payoff from buying a call option is:
 a. $-\text{Max}(S_T-K,0)$
 b. $\text{Max}(K-S_T,0)$
 c. $\text{Max}(S_T-K,0)$
 d. $-\text{Max}(K-S_T,0)$

4. A riskless portfolio can be constructed by combining
 a. a call option with Δ_c shares of the underlying asset
 b. a call option with $-\Delta_c$ shares of the underlying asset
 c. a put option with Δ_p shares of the underlying asset
 d. a call option with a put option on the same underlying asset and the same strike price

5. Suppose that returns in successive years are 15%, -20%, 30%, -20% and 25%. The geometric average return is:
 a. 3.64%
 b. 12.4%
 c. 6%
 d. 21.41%