5.2 Properties of Rational functions

A **rational function** is a function of the form

\[f(x) = \frac{\text{polynomial}}{\text{polynomial}} = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0}{b_k x^k + b_{k-1} x^{k-1} + \cdots + b_1 x + b_0} \]

Example

\[f(x) = \frac{3x^4 - x^2 - 2x + 5}{-x^2 + 4x + 1} \]

The **domain** of a rational function is the set of all real numbers except those \(x \), for which \(q(x) = 0 \)

To **find the domain**:

(i) solve \(q(x) = 0 \)

(ii) Write \(Df = \{ x \mid q(x) \neq 0 \} \)

Example: Find the domain of \(f(x) = \frac{3x^4 - x^2 - 2x + 5}{-x^2 + 4x + 1} \)

(i) Solve: denominator = 0

\[-x^2 + 4x + 1 = 0\]

\[x = \frac{-4 \pm \sqrt{4^2 - 4(-1)(1)}}{2(-1)} = \frac{-4 \pm \sqrt{20}}{-2} = \frac{-4 \pm 2\sqrt{5}}{-2} = 2 \pm \sqrt{5} \]

(ii) \(Df = \{ x \mid x \neq 2 \pm \sqrt{5} \} = (-\infty, 2 - \sqrt{5}) \cup (2 - \sqrt{5}, 2 + \sqrt{5}) \cup (2 + \sqrt{5}, +\infty) \)

A rational function often has asymptotes: vertical and/or horizontal/oblique.

Informally speaking, an **asymptote** is a straight line (vertical, horizontal or slanted) toward which the graph comes near.

How to find asymptotes

Vertical: 1. Reduce \(f(x) \) to the lowest terms:

(i) factor completely the numerator and the denominator;

(ii) cancel common factors

2. Solve the equation: denominator = 0

3. If \(x = r \) is a solution found in 2, then the line \(x = r \) is a vertical asymptote

Horizontal:

a) if the degree of the numerator < the degree of the denominator, then the line \(y = 0 \) is the horizontal asymptote
(b) if the degree of the numerator = the degree of the denominator, then the line \(y = \frac{a_n}{b_k} \) is the horizontal asymptote

(c) if the degree of the numerator > the degree of the denominator, then the graph does not have a **horizontal asymptote**, however, if

Oblique:

(d) the degree of the numerator = 1 + the degree of the denominator, then the line \(y = (\text{quotient obtained by dividing the numerator by the denominator}) \) is an oblique (slanted) asymptote.

Remarks:

1. A rational function can have only one horizontal/oblique asymptote, but many vertical asymptotes.
2. If a rational function has a horizontal asymptote, then it does not have an oblique one.
3. The graph of a rational function can cross a horizontal/oblique asymptote, but does not cross a vertical asymptote.
4. Horizontal/oblique asymptotes describe the behavior of function for x with large absolute value; vertical asymptotes describe the behavior of function near a point.

Example: Find the asymptotes for the following functions

a) \(f(x) = \frac{3x + 5}{2x - 6} \)

Vertical asymptote:

1) \(f \) is in lowest terms
2) \(2x - 6 = 0 \)
 - \(2x = 6 \)
 - \(x = 3 \)
3) vertical asymptote: \(x = 3 \)

Horizontal/oblique asymptote:

degree of numerator (1) = degree of the denominator (1), \(y = \frac{3}{2} \) is the horizontal asymptote

b) \(f(x) = \frac{2x^2 + 5x - 1}{3x^3 - 6x^2} \)

Vertical asymptote:

1) \(f(x) = \frac{2x^2 + 5x - 1}{3x^3 - 6x^2} = \frac{2x^2 + 5x - 1}{3x^2(x - 2)} \) is in lowest terms (numerator can’t be factored)
2) \(3x^2 - 6x^2 = 0 \)
 - \(3x^2(x - 2) = 0 \)
 - \(x^2 = 0 \) or \(x - 2 = 0 \)
 - \(x = 0 \) or \(x = 2 \)
3) vertical asymptotes: \(x = 0, x = 2 \)

Horizontal/oblique asymptote:
degree of numerator (2) < degree of the denominator(3), \(y = 0 \) is the horizontal asymptote

c) \(f(x) = \frac{3x^5 - 1}{x^2 + 2} \)

Vertical asymptote: 1) \(f(x) \) is in lowest terms (the denominator cannot be factored)
 2) \(x^2 + 2 = 0 \)
 \(x^2 = -2 \) (not possible)
 no solution
 3) vertical asymptotes: none

Horizontal/oblique asymptote:
degree of numerator (5) > degree of the denominator(2), there is no horizontal asymptote

\[\text{degree of numerator (5) } \neq 1 + \text{degree of the denominator(2), there is no oblique asymptote} \]

\[d) \ f(x) = \frac{3x^3 - 4x^2 + 1}{x^2 - 2} \]

Vertical asymptote: 1) \(f(x) \) is in lowest terms
 2) \(x^2 - 2 = 0 \)
 \(x^2 = 2 \)
 \(x = \pm \sqrt{2} \)

 3) vertical asymptotes: \(x = -\sqrt{2}, x = \sqrt{2} \)

Horizontal/oblique asymptote:
degree of numerator (3) > degree of the denominator(2), there is no horizontal asymptote

\[
\begin{align*}
\frac{3x - 4}{x^2 - 2} &= \frac{3x^3 - 4x^2 + 1}{x^2 - 2} \\
&= \frac{-3x^3 + 6x}{-4x^2 + 6x + 1} \\
&= \frac{4x^2 - 8}{6x - 7}
\end{align*}
\]

Oblique asymptote: \(y = 3x - 4 \)
5.3 Sketching the graph of a rational function \(f(x) = \frac{p(x)}{q(x)} \)

1. Find the **domain**: (i) solve \(q(x) = 0 \)

 (ii) \(D_f = \{ x \mid q(x) \neq 0 \} \)

2. Find \(x \)- and \(y \)-intercepts:
 - \(y \)-intercept: \(y = f(0) \)
 - \(x \)-intercepts: numerator = 0

3. Find **vertical asymptotes**, if any

 Remark: If \(x = r \) is excluded from the domain and \(x = r \) is not a vertical asymptote, then the graph of \(f \) will pass through the point \((r, \text{“reduced”} f(r)) \) but the point itself will not be included. We put an open circle around that point.

 The graph of \(f \) has a “hole” at \(x = r \)

4. Find the **horizontal/oblique asymptote**, if any.

5. Find the points where the graph **crosses** the horizontal/oblique **asymptote** \(y = mx + b \)

 (i) solve the equation \(f(x) = mx + b \)

6. Check for **symmetries**

 (i) If \(f(-x) = f(x) \), then the graph is symmetric about \(y \)-axis;

 (ii) If \(f(-x) = -f(x) \), then the graph is symmetric about the origin

 Remark: If the graph is symmetric then only graph function for \(x > 0 \) and use symmetry to graph the corresponding part for \(x < 0 \)

7. Make the **sign chart** for the “reduced” \(f(x) \)

 (i) plot \(x \)-intercepts and points excluded from the domain on the number line; these points divide the number line into a finite number of test intervals

 (ii) choose a point in each test interval and compute the value of \(f \) at the test point

 (iii) based on the sign of \(f \) at the test point, assign the sign to each test interval

 Remark: When \(f(x) > 0 \), then the graph of \(f \) is above the \(x \)-axis.

 When \(f(x) < 0 \), then the graph is below the \(x \)-axis

8. Sketch the **graph** of \(f \) using 1)-7):

 (i) Draw coordinate system and draw all asymptotes using a dashed line

 (ii) plot the intercepts, points where the graph crosses the horizontal/oblique asymptote and the points from the table in step 7.

 (iii) join the points with a continuous curve taking into consideration position of the graph relative to the \(x \)-axis (step 7) and behavior near asymptotes.
Example: Graph \(f(x) = \frac{x^2 + x - 12}{x^2 - 4} \)

1) Domain: \(x^2 - 4 = 0 \)
 \(x^2 = 4 \)
 \(x = 2, x = -2 \)
 \(Df = \{x | x \neq -2, 2\} \)

2) \(y \)-intercept: \(y = f(0) = (-12)/(-4) = 3 \)

 \(x \)-intercepts: \(x^2 + x - 12 = 0 \)
 \((x+4)(x-3) = 0 \)
 \(x = -4 \) or \(x = 3 \)

3) Vertical asymptotes: \(f(x) = \frac{x^2 + x - 12}{x^2 - 4} = \frac{(x+4)(x-3)}{(x-2)(x+2)} \)
 \((x-2)(x+2) = 0 \)
 \(x = 2 \) \(x = -2 \)

 Vertical asymptotes: \(x = -2, x = 2 \)

4) Horizontal/oblique asymptotes
 Degree of numerator(2) = degree of denominator(2), \(y = 1/1 = 1 \) is the horizontal asymptote

5) Intersection with asymptote: \(f(x) = 1 \)
 \(\frac{x^2 + x - 12}{x^2 - 4} = 1 \)
 \(x^2 + x - 12 = x^2 - 4 \)
 \(x = 8 \)

 The graph crosses the horizontal asymptote at \(x = 8 \), that is at the point \((8, 1)\)

6) Symmetries:
 \(f(x) = \frac{x^2 + x - 12}{x^2 - 4} \)
 \(f(-x) = \frac{(-x)^2 + (-x) - 12}{(-x)^2 - 4} = \frac{x^2 - x - 12}{x^2 - 4} \)

 \(f(x) \) is not the same as \(f(-x) \), so \(f \) is not even and therefore not symmetric about \(y \)-axis

 \(f(-x) = \frac{(-x)^2 + (-x) - 12}{(-x)^2 - 4} = \frac{x^2 - x - 12}{x^2 - 4} \)

 \(-f(x) = -\frac{x^2 + x - 12}{x^2 - 4} = -\frac{x^2 - x + 12}{x^2 - 4} \)

 \(f(-x) \) and \(-f(x) \) are not the same so, \(f \) is not odd and therefore not symmetric about the origin

7)
<table>
<thead>
<tr>
<th>x</th>
<th>$f(x) = \frac{x^2 + x - 12}{x^2 - 4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>$\frac{(-5)^2 + (-5) - 12}{(-5)^2 - 4} = \frac{8}{21}$ positive</td>
</tr>
<tr>
<td>-3</td>
<td>$\frac{(-3)^2 + (-3) - 12}{(-3)^2 - 4} = -\frac{6}{5}$ negative</td>
</tr>
<tr>
<td>0</td>
<td>3 positive</td>
</tr>
<tr>
<td>2.5</td>
<td>$\frac{2.5^2 + 2.5 - 12}{2.5^2 - 4} = \frac{13}{9}$ negative</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{4^2 + 4 - 12}{4^2 - 4} = \frac{2}{3}$ positive</td>
</tr>
</tbody>
</table>

8)

\[\begin{array}{c|c|c|c|c|c}
\text{pos} & \text{neg} & \text{pos} & \text{neg} & \text{pos} \\
\hline
-4 & -2 & 2 & 3 & \end{array} \]

above below above below above